

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

Cosmic ray studies with the DAMPE and HERD space missions: light and heavy components

Candidate: Francesca Alemanno Supervisor: Prof. Ivan De Mitri

ADMISSION TO THE THIRD YEAR PhD in Astroparticle Physics – XIV Cycle 13th October 2020

LNGS

Overview

Introduction

2

3

4

- Part 1: Cosmic Ray studies with the DAMPE experiment
- Part 2: Cosmic Ray studies with
- the HERD space mission
- Summary and Conclusions

Introduction: Cosmic Ray physics in space

Overview

Introduction

Part 1: Cosmic Ray studies with the DAMPE experiment

Part 2: Cosmic Ray studies with the HERD space mission

Summary and Conclusions

spectrum

4 5

He spectrum

2

3

The DAMPE experiment

- Light component: p + He
- Heavy component: Fe spectrum
- Other contributions: Study of
- systematic uncertainties
- Other contributions: Fit of the

The DAMPE experiment

Light component: p + He

Heavy component: Fe spectrum

Other contributions: Study of

systematic uncertainties

Other contributions: Fit of the

The DAMPE space mission

The DArk Matter Particle Explorer (DAMPE) is a high-energy particle detector

The main objectives of the DAMPE mission are:

- Study of galactic cosmic-ray physics
 - Dark matter searches
- High-energy gamma-ray astronomy

The DAMPE collaboration involves several institutes in China, Italy and Switzerland

DAMPE was successfully launched in a Sunsynchronous orbit on December 17th 2015 from the **Jiuquan Satellite Launch Center**

PSD \rightarrow Charge measurement + identification of electrons and gamma-rays **STK** → Silicon strips (precise tracking) + tungsten converter (pair production) **BGO** \rightarrow Energy measurement + e/p separation

- **NUD** → *Hadrons rejection*

The DAMPE experiment

Light component: p + He

Heavy component: Fe spectrum

Other contributions: Study of

systematic uncertainties

Other contributions: Fit of the

The light component: motivation

Data sample and selection criteria

<u>ORBITAL DATA (from the satellite):</u> 44 months \rightarrow January 2016 – August 2019

<u>MONTE CARLO DATA</u> (simulated): • Proton [1 GeV – 1 PeV] • Helium [10 GeV – 200 TeV]

Pre-selection:

Performed to eliminate events entering the detector from the side and to avoid the effect of geomagnetic rigidity cutoff

Trigger selection:

Events must activate the high energy trigger of DAMPE i.e. energy deposition in the top 4 BGO layers exceeding the threshold of ~ 10 MIPs in each hit BGO bar

Track selection:

To ensure that events have good quality of the reconstructed trajectories

Charge selection for p+He: To reject CR nuclei with charge larger than 2 (Li, Be, B ...)

> G S S I

Energy reconstruction

The nuclear interaction length of DAMPE is ~ 1.6, while the radiation length is 32. Therefore, for protons and helium nuclei, a certain fraction of the primary energy is undetectable The energy deposition for protons and helium nuclei in the BGO is only 35% - 40%

In order to obtain the primary energy of an entering event, a method based on the Bayes theorem is used

Using this formula, the primary spectrum can be obtained from the observed spectrum in the BGO calorimeter

$$Nig(E_T^iig) = rac{1}{arepsilon_i}\sum_{j=1}^n Pig(E_T^i\mid E_O^jig) Nig(E_O^jig)$$

 $N(E_T^i)$ Primary spectrum

 $N(E_O^j)$ Observed spectrum

 E_O^j Response matrix derived from MC using the Bayes theorem

Detection efficiency ε_i

The DAMPE experiment

Light component: p + He

Heavy component: Fe spectrum

Other contributions: Study of systematic uncertainties Other contributions: Fit of the

The Iron Sky & Fe spectrum measurement

The DAMPE experiment

Light component: p + He

Heavy component: Fe spectrum

Other contributions: Study of systematic uncertainties

Other contributions: Fit of the

Backscattering study

<u>From the p+He analysis</u>:

- Correction performed on the MC PSD charge selection
- Source of systematic uncertainty
- <u>Possible explanation</u>: MC overestimating the fraction of backscattered particles

RESULTS:

- Number of backscattered particles increasing with energy of the primary
 - The backscattered particles are mainly: protons, pi+ and pi-
 - Energy released of ~ hundreds of MeV

NEXT STEPS:

- Extend the study to other nuclei (important for Fe analysis)
 - Check different hadronic models

The DAMPE experiment

Light component: p + He

Heavy component: Fe spectrum

Other contributions: Study of systematic uncertainties

Other contributions: Fit of

Overview

2

3

LNGS

- Introduction
- Part 1: Cosmic Ray studies with the DAMPE experiment
- Part 2: Cosmic Ray studies with the HERD space mission
- Summary and Conclusions

Part 2 **Overview**

1 The PSD of HERD 2 3

The HERD space mission

Simulation results: Sr90 radioactive source and accelerated beams

Part 2 **Overview**

The HERD space mission 1 The PSD of HERD 2 Simulation results: Sr90 radioactive 3 source and accelerated beams

The HERD experiment

The High Energy cosmic Radiation Detection facility

HERD is one of several space astronomy payloads planned to be on-board the China's Space Station

The HERD space mission

Simulation results: Sr90 radioactive source and accelerated beams

The Plastic Scintillator Detector (PSD)

Separation of γ-rays from charged particles, nuclei identification with Z from 1 to 26 **Two layout configurations under investigation – test in lab + simulation**

BAR option

Each layer made by two staggered sub-layers of long bars
SiPM read-out at both ends of the bar (right and left) to reduce the light output non-uniformity along the bar itself

- Better option because of less number of read-out channels

- Worse option because of the higher backscattering problem

@ GSSI & LNGS

TILE option

Two layers of small square tiles, read-out by 6 SiPMs
Better option in order to reduce the backscattering problem
Worse option for the large number of read-out channel

The HERD space mission

Simulation results: Sr90 radioactive source and accelerated beams

Sr90 radioactive source & test beam facilty

LNGS

Overview

Introduction

1

2

3

4

- Part 1: Cosmic Ray studies with the DAMPE experiment
- Part 2: Cosmic Ray studies with
- the HERD space mission
- **Summary and Conclusions**

Summary and conclusions

- Light component (p+He) spectrum preliminary measured with the DAMPE experiment
- Ongoing extension of the spectrum to higher energy and correction for the saturation in DAMPE calorimeter • Study towards the measurement of the heavy component (Fe)
 - Evaluation of the systematic uncertainties due to backscattering effect • Fit of the He spectrum
 - GEANT4-based simulation of the Plastic Scintillator Detector
 - Simulation to be compared with hardware tests
 - I am participating in the definition of the final design for the future HERD space mission

Thank you for your attention!

WORKSHOPS/CONFERENCES/COLLABORATION MEETINGS

- 8th International DAMPE Workshop, L'Aquila, 10/12/2018 12/12/2018
- 105° Congresso Nazionale SIF, L'Aquila, 23/09/2019 27/09/2019.
- *Talk*: "*Measurement of the cosmic-ray proton + helium spectrum with DAMPE*"
- SiPM workshop: from fundamental research to industrial applications, Bari, 2/10/2019 4/10/2019
- Cosmic Ray Anisotropy Workshop CRA2019, L'Aquila, 7/10/2019 11/10/2019
- HerdSoftware hands-on session, Bari, 16/10/2019 18/10/2019
- DAMPE simulation hands-on meeting, CERN (Geneva), 25/11/2019
- 8th HERD Workshop, Xi'an, China, 16/12/2019 17/12/2019.

Talk: "GEANT4-based simulation of light production/propagation/detection in bar shaped PSD with SiPM readout @ GSSI"

- CORSIKA Cosmic Ray Simulation Workshop [virtual], 22/06/2020 25/06/2020
- DAMPE-EU collaboration meeting [virtual], 16/07/2020
- **Talk**: "Update on the light element (p + He) analysis and studies towards the measurement of the heavy component (Fe)"
- 106° Congresso Nazionale SIF [virtual], 14/09/2020 18/09/2020
- *Talk*: "*Measuring light elements in space with the DAMPE mission*"
- Several talks during periodical working group online meetings of DAMPE and HERD.

OUTREACH ACTIVITIES

- Part of the scientific committee for "Premio Asimov", April 2019
- Outreach Cosmic Ray Activities (OCRA stage), L'Aquila, 15/04/2019 16/04/2019
- Volunteer in the SIF conference, L'Aquila, 23/09/2019 27/09/2019
- Participation in SHARPER (European Researcher's night) with a stand in Piazza Duomo, L'Aquila, 27/09/2019
- ICD International Cosmic Day, L'Aquila, 6/11/2019
- Part of the scientific committee for "Premio Asimov", April 2020

SCHOOLS

- Joint 9th IDPASC SCHOOL and XXXI INTERNATIONAL SEMINAR of NUCLEAR and SUBNUCLEAR PHYSICS "Francesco Romano", Otranto, 27/05/2019 – 4/06/2019

- VIII International Geant4 School, Belgrade, 17/11/2019 – 22/11/2019

SCIENTIFIC PUBLICATIONS

- PUBLISHED: Y. Wei, Y. Zhang, Z. Zhang, L. Wu, H. Dai, C. Liu, C. Zhao, Y. Wang, Y. Zhao, P. Jiang, Y. Wang, F. Alemanno, M. Di Santo, E. Catanzani, X. Wang, Z. Xu, G. Huang, "The Quenching Effect of BGO Crystals on Relativistic Heavy Ions in the DAMPE Experiment", in *IEEE* Transactions on Nuclear Science, vol. 67, no. 6, pp. 939-945, June 2020, doi: 10.1109/TNS.2020.2989191.

- **PUBLISHED:** C. Yue, P. Ma, M. Di Santo, L. Wu, F. Alemanno, P. Bernardini, D. Kyratzis, G. Yuan, Q. Yuan, Y. Zhang, "Correction Method for the Readout Saturation of the DAMPE Calorimeter", in Nuclear Inst. and Methods in Physics Research A, September 2020. https://doi.org/10.1016/j.nima.2020.164645

- ACCEPTED FOR PUBLICATION: W. Jiang, C. Yue, M. Cui, X. Li, Q. Yuan, F. Alemanno, P. Bernardini, Z. Chen, T. Dong, G. Donvito, D. F. Droz, P. Fusco, F. Gargano, D. Guo, D. Kyratzis, S. Lei, Y. Liu, F. Loparco, P. Ma, G. Marsella, M. N. Mazziotta, I. De Mitri, X. Pan, W. Peng, A. Surdo, A. Tykhonov, Y. Wei, Y. Yu, J. Zang, Y.-P. Zhang, Y.-J. Zhang, Y.-L. Zhang, "Comparison of proton shower developments in the BGO calorimeter of the Dark Matter Particle Explorer between GEANT4 and FLUKA simulations", in Chinese Physics Letters, September 2020. http://arxiv.org/abs/2009.13036

- TO BE SUBMITTED: F. Alemanno, D. Kyratzis, et al., "Outreach Cosmic Ray Activities (OCRA): measurement of muon flux at various altitude", September 2020.

BACKUP SLIDES

Is it worth to extend the **p** + He spectrum to higher energy

Backscattered particles in the PSD

The backscattered particles are mainly: protons, pi+ and pireleasing energy of ~ hundreds of MeV

Extend the study to other nuclei (important for Fe analysis)

Check different hadronic models

S

G

S

GEANT-4 based simulation of the PSD

The user can:

Modify the geometry:

- scintillator shape, size, material
- wrapping thickness and material
- SiPMs size, dimension, position

The user can:

- Turn ON/OFF Cherenkov/Scintillation photon production
- Set the optical properties of the detector: light yield and attenuation length of the scintillator material, refractive index etc.

Ratio between number of photons at the SiPMs and total number of photons in the bar

COMPARISON

Study of the SiPMs cell occupancy

- AdvanSiD ASD NUV3S
- 40 µm microcells pitch
- 43% PDE
- 250 MeV proton beam
- 100 protons central position

Geometry 1: (x, y, z) = (1, 1, 50) cm Geometry 2: (x, y, z) = (1, 2, 50) cm Geometry 3: (x, y, z) = (1, 3, 50) cm

Simulation results: Sr90 radioactive source

1.5

97.5

98

98.5

Photons at the SiPMs vs Reflectivity of the wrapping

Simulation performed to reproduce hardware tests to be done at LNGS in the near future

Simulation results: test beam facility

	Contribution from beam protons	Contribution from secondaries		
le	~ 95 %	~ 5 %		
lile	~ 93 %	~ 7 %	G	S
le	~ 92.6 %	~ 7.4 %	S	Т