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Outline

• Starburst galaxies

• Modeling non-thermal particles

• Diffuse gamma rays and neutrinos

• Wind termination shock
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1 - WHY 
STARBURST 
GALAXIES??
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Starburst galaxy M82 - APOD

Image credit: Daniel Nobre
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Starburst nucleus (SBN)

M82 - Image credit: 

NuSTAR NASA/JPL-

Caltech/SAO/NOAO
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M82 – Image credit: HST-VLA-VLBI

A. Brunthaler, MPIfR
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Veil Nebula– Image credit: HST

Spacetelescope.org/news/heic1520/

Diffusive shock 

acceleration
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Starburst galaxy M82 - APOD

Image credit: Daniel Nobre
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APOD – May 15 2020 – M81 and M82

Image credit: Dietmar Hager & Torsten Grossmann
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COSMOS field – Image credit: HST

Spacetelescope.org/images/heic1313b/
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Enhanced SFR (ψ)

SBGs are unique sources

INJECTION CONFINEMENT ESCAPE

ℛ𝑆𝑁 𝑛𝐼𝑆𝑀 𝑈𝑅𝐴𝐷 & 𝐵 𝛿𝐵/𝐵 𝑣𝑤𝑖𝑛𝑑
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SBGs are everywhere
Tidal interactions Mergers Young galaxy

Starburst

High-z progenitors of present-day normal galaxies are starburst galaxies

DIFFUSE FLUX 

OF 𝛾 AND 𝜈
Faint pointlike

Highly numerous
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Promising wind bubble system

X
𝐽𝑒𝑠𝑐

𝐽𝑖𝑛

?
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2 - STARBURST 
NUCLEI



Particles in SBNi
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Star cluster

ISM cloud

Hot pressurized 

medium (𝑇 > 106𝐾, 

𝑃 ≈ 107 𝐾 𝑐𝑚−3)

Acceleration site

Hot gas 

outflow



Particles in SBNi
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Star cluster

ISM cloud

Hot pressurized 

medium (𝑇 > 106𝐾, 

𝑃 ≈ 107 𝐾 𝑐𝑚−3)

Acceleration site

Hot gas 

outflow

Escaping proton



Particles in SBNi
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Star cluster

ISM cloud

Hot pressurized 

medium (𝑇 > 106𝐾, 

𝑃 ≈ 107 𝐾 𝑐𝑚−3)

Acceleration site

Escaping proton

p + p → p + p + 𝜋0 + 𝜋+ + 𝜋−

𝜋± → 𝑒± +  𝜈𝜇 + 𝜈𝜇 + 𝜈𝑒(  𝜈𝑒)

𝜋0 → 𝛾 + 𝛾

𝛾𝑉𝐻𝐸 + 𝛾𝐵𝐾𝐺 → 𝑒+ + 𝑒−

pp interaction



Particle transport in SBNi

• Shocks are present in the entire starburst nucleus

• The medium is complex and highly fragmented

Leaky-box approximation
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𝑓(𝑝)

𝜏𝑙𝑜𝑠𝑠(𝑝)
+

𝑓(𝑝)

𝜏𝑎𝑑𝑣(𝑝)
+

𝑓(𝑝)

𝜏𝑑𝑖𝑓𝑓(𝑝)
= 𝑄(𝑝)



Particle transport in SBNi
Particles are injected by supernovae

The particle injection is balanced by losses and escape
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𝑄𝑝 𝑝 =
ℛ𝑆𝑁ℵ𝑆𝑁(𝑝)

𝑉
∝
ℛ𝑆𝑁

𝑉

𝑝

𝑚𝑐

−𝛼

𝑒−𝑝/𝑝𝑝,𝑚𝑎𝑥

𝑓(𝑝)

𝜏𝑙𝑜𝑠𝑠(𝑝)
+

𝑓(𝑝)

𝜏𝑎𝑑𝑣(𝑝)
+

𝑓(𝑝)

𝜏𝑑𝑖𝑓𝑓(𝑝)
= 𝑄(𝑝)

𝜏𝑙𝑜𝑠𝑠 𝑝 =  𝑗
1

𝐸

𝑑𝐸

𝑑𝑡 𝑗

−1

𝜏𝑎𝑑𝑣 = 𝑅/𝑣𝑤𝑖𝑛𝑑 𝜏𝑑𝑖𝑓𝑓(𝑝) = 𝑅2/𝐷(𝑝)



Injection of particles
Particles are injected by SNRs as 𝒩𝑆𝑁 𝑝 ∝ 𝑝−𝛼𝑒−𝑝/𝑝𝑚𝑎𝑥

The injection term of the transport equation
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𝜉 𝐸𝑆𝑁 =  𝑑𝑝 4 𝜋 𝑝2𝑇(𝑝)𝒩𝑆𝑁(𝑝)

𝑄𝑝 𝑝 =
ℛ𝑆𝑁𝒩𝑆𝑁(𝑝)

𝑉
∝
ℛ𝑆𝑁

𝑉

𝑝

𝑚𝑐

−𝛼

𝑒−𝑝/𝑝𝑚𝑎𝑥



Turbulence and diffusion
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For δB/B«1 particles follow
helical trajectories around

magnetic field lines

For δB/B≈1 particles are confined
for longer time

Image credit: Milton Van Dyke

Image credit: Sandra L. Collier

𝐸(𝑘) ∝ 𝑘−5/3

𝛿𝐵

𝐵
= 0.8

𝛿𝐵

𝐵
= 0.04

Image credit: Andrej DundovicImage credit: Andrej Dundovic



Diffusion models
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𝐷 𝑝 = 𝑟𝐿 𝑝 𝑣(𝑝)/3ℱ(𝑘) ↔ 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

 𝑘0
∞
𝑑𝑘  ℱ 𝑘 𝑘 = (

𝛿𝐵

𝐵
)2= 𝜂𝐵 ↔ 𝐻𝑜𝑤 𝑚𝑢𝑐ℎ 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡?

𝑘0
−1 = 𝐿0 = 1 𝑝𝑐 ↔ 𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑎𝑙𝑒

A) ℱ 𝑘 ∝ 𝑘−2/3 - 𝜂𝐵 ≈ 1 ↔ 𝑆𝑡𝑟𝑜𝑛𝑔 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
B) ℱ 𝑘 = 1 ↔ 𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
C) ℱ 𝑘 ∝ 𝑘−2/3 - 𝜂𝐵 ≪ 1 ↔ 𝑀𝑊 − 𝑙𝑖𝑘𝑒 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒



Particle lifetime in SBNi
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Electrons Protons
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Particle lifetime in SBNi
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Electrons Protons
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Particle lifetime in SBNi
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Electrons Protons



Confinement and calorimetry

1. Electrons are likely well confined in starburst environment due 
to local 𝑛𝐼𝑆𝑀, 𝐵 & 𝑈𝑅𝐴𝐷

2. Proton calorimetry is not guaranteed but

• High level of turbulence 

• High ISM density

suggest that diffusion escape might be negligible and

energy losses can compete with the advection in shaping

the transport
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Secondaries and pairs in a calorimeter 

 
𝑄𝑠𝑒𝑐(𝜅𝐸) ∝ 𝑄𝑝(𝐸)

𝑄𝑡𝑒𝑟(  𝜅𝐸) ∝ 𝜏𝛾𝛾
∗ 𝐸 𝑄𝑝(𝐸)
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≈ (2)𝜏𝛾𝛾

∗ 𝐸  𝜅/𝜅 𝛼−3



Particle spectra and HE SED
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A = B  STRONG TURBULENCE C MILD TURBULENCE



Impact of D on the HE gammas

22/07/2020 Enrico Peretti 30

A = B  ADV-LOSS TRANSPORT C  DIFF TRANSPORT

ADV-LOSS

DIFFUSION



Gamma absorption and pairs
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Hard X-rays as hadronic marker
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The case of NGC 253
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Conclusions – Part 1
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• SBNi are unique environments for particle acceleration and 

confinement where the transport is regulated mostly by advection 

and energy losses

• HE gamma rays are likely dominated by hadronic emission with 

strong absorption at VHE  

• The hard X-ray emission from hadronic secondaries and pairs can 

support calorimetry

• Neutrinos from individual starbursts are approximately 2 orders of 

magnitude below current IceCube sensitivity for pointlike sources
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3 – DIFFUSE 
FLUX OF 

STARBURST 
ORIGIN



Starburst contribution to the diffuse flux

SBGs diffuse 𝛾
and 𝜈 ?
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Confinement 𝛾-ray opacity

Faint as isolated 
sources

Highly numerous 
at higher redshift



Diffuse flux - ingredients
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z

• Flux scaling with the SFR - prototype

• Redshift dependence of sources

• Number of objects as a function of z

• Volume element and EBL absorption

Φ𝛾,𝜈 𝐸 =
1

4𝜋
 𝑑Ω 

0

4.2

𝑑𝑧
𝑑𝑉𝐶(𝑧)

𝑑𝑧 𝑑Ω
 
𝜓𝑚𝑖𝑛

∞

𝑑 ln𝜓 Φ𝑆𝐹𝑅 𝜓, 𝑧 1 + 𝑧 2𝑓𝛾,𝜈(𝐸 1 + 𝑧 , 𝜓)𝑒−𝜏𝛾𝛾(𝐸,𝑧)



Prototype starburst-calorimeter and SFR-scaling
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We define as starburst an object that succesfully confines particles

𝜏𝑙𝑜𝑠𝑠 𝐸, 𝜓 ≤ 𝜏𝑒𝑠𝑐(𝐸, 𝜓) → 𝜓𝑚𝑖𝑛

The injection of gamma rays and neutrinos scales linearly with the 
SFR when the source is calorimetric

𝑄𝛾,𝜈 𝐸,𝜓 =
𝜓

𝜓𝑀82
× 𝑄𝛾,𝜈

𝑀82
(𝐸)



Counting sources: SFRD & SFRF
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The star formation rate function

(SFRF) allows to count the number

density of galaxies as a function of 

the SFR

𝜙 𝜓, 𝑧 =
𝑑𝑁(𝜓,𝑧)

𝑑𝑙𝑛 𝜓 𝑑𝑉𝑐

𝑛𝑆𝐵𝐺 𝑧 =  
𝜓𝑚𝑖𝑛

∞

𝑑 ln𝜓 𝜙(𝜓, 𝑧)



Counting sources: SFRD & SFRF
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EBL-CMB and electromagnetic cascade
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Image credit: Dole et al. (2006)

E g  Minimum energy for PP 

on the EBL

E C IC from the least

energetic pair

E   F(E)

E

2

E

E

E g E C 

- 2

- 3 / 2



Diffuse 𝛾 and 𝜈 flux from SBGs
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On the maximum energy 

22/07/2020 Enrico Peretti 43

Starburst contribution to IceCube

neutrinos strongly depends on the 

maximum energy achievable in SBNi

SNR in case of Bohm diffusion:

𝐸𝑚𝑎𝑥 = 30 𝑃𝑒𝑉 × 𝑅3𝑢4𝐵𝑚𝐺

• Magnetic field amplification can 

allow reaching 10-100 PeV



Conclusions – Part 2

• The high number density of starbursts expected from the SF-
history could provide a diffuse neutrino flux that can be the 
leading contribution to current IceCube observations > 200 TeV

• Gamma rays from starbursts can explain a consistent part of the 
diffuse flux observed by Fermi-LAT

• The maximum energy at SNRs in SBNi strongly affects 
neutrinos, but not gamma rays
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4 – STARBURST 
WIND 

TERMINATION 
SHOCK
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Launching of a galactic wind

 𝐸 −  𝑀
in the SBN

SNe and 

young stars
𝑉∞ = 2  𝐸  𝑀−1

Halo properties

𝑛ℎ − 𝑇ℎ

Starburst

activity
Formation and evolution

of a wind bubble

Stationary bubble
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Structure of a wind bubble

Free wind

Shocked wind

Shocked halo medium

Wind 

termination

shock

Forward

shock

Contact

discontinuity
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Transport properties and maximum energy
• The geometry of the system is non standard with escape of particles

allowed only from the downstream region of the shock 

• Particles diffusing upstream feel an effective wind speed

• The maximum energy of the system is limited from above by the 

dimension of the shocked bubble

𝜆𝐷 𝑑 =  𝐷 𝑉 𝑑
≈ 𝑅𝑒𝑠𝑐 − 𝑅𝑠ℎ → 𝐸𝑚𝑎𝑥~10

2 𝑃𝑒𝑉



Preliminary
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A gamma-ray opaque neutrino source



Preliminary results

• The (stationary) wind termination shock can inject HE 
particles in the starburst system with multi-PeV energy

• Particles diffusing upwind can produce neutrinos with 
absorbed gamma-ray counterpart

• Possible contribution of escaping particles to UHECR
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𝐸 [𝑒𝑉]

1036

1037

1038

10191018 1020

What if 𝐸𝑚𝑎𝑥 = 1018.5 𝑍 𝑒𝑉

NO SPALLATION
Si

H*

He*

N*

Image credit: A. Condorelli, 

D Boncioli, S. Petrera

Source propagation model

M 82 FIR photon field

Primary Si (𝛼 = 1)  
Secondary N, He and H 

SFR evolution of sourcesPreliminary

Pierre Auger Observatory
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Starburst nuclei are capable of confining most of particles injected with unique
consequences in terms of multiwavelength and neutrino emission

Starburst galaxies contribute substantially to the diffuse fluxes of 𝛾 and 𝜈

The wind termination shock has breakthrough potential in multimessenger
astrophysics

New open questions: maximum energy in SBN and at wind shocks? Role of SBGs
as multimessenger sources? Are SBGs sources of UHECRs? Interplay SB - AGN? 

Summary


