Search for double beta decay of ¹³⁰Te to the 0⁺ states of ¹³⁰Xe with the CUORE experiment

PhD Candidate G. Fantini^{1,2}

¹ Gran Sasso Science Institute, L'Aquila I-67100, Italy
 ² INFN - Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila), I-67100, Italy
 ³ INFN - Sezione di Roma, Roma, I-00185, Italy

Advisors C. Bucci² C.Tomei³

Outline

- Introduction
- The CUORE experiment
 - Operating principles
 - Data processing
 - Detector characterization
- Ground state 0vββ decay search
- Excited state searches

Introduction Double Beta Decay

$(A, Z) \to (A, Z + 2) + 2e^{-}(+X)$

- Allowed within the Standard Model
- 2nd order process
- observed in 12 isotopes

$X = \emptyset$

- Beyond Standard Model
- Majorana nature of neutrinos
- Lepton number violation

G

Introduction Majorana neutrinos

Majorana

Dirac

- Vanishing internal quantum numbers (lepton number)
- Their own anti-particles
- Neutrino mass generation mechanism
- Mediate neutrino-less double beta decay
- Leptogenesis

Introduction **Neutrinoless Double Beta Decay**

[J.Engel, J.Menéndez, Rep. Prog. Phys. 80, 4 (2017)]

δ

$$\langle m_{\beta\beta} \rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$$

 $\Gamma_{0\nu} = G_{0\nu} g_A^4 |M_{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_{\rho}^2}$

- G_{0v} phase space factor (well known, small uncertainty)
- Nuclear Matrix Element (NME) (model dependence, large uncertainty)
- Effective Majorana mass (unknown)

G S

[G. Fantini, A. Gallo Rosso, F. Vissani, V. Zema, Adv. Ser. Direct. High Energy Phys. 28 (2018) 37-119]

 $\nu_{f,L} = \sum_{j=1}^{J} U_{l,j} \nu_{j,L}$

- Pontecorvo-Maki-Nakagawa-Sakata mixing matrix
- 3 mixing angles
- 1 (Dirac) / 3 (Majorana) CP violating phases

[G. Fantini, A. Gallo Rosso, F. Vissani, V. Zema, Adv. Ser. Direct. High Energy Phys. 28 (2018) 37-119]

 $\nu_{f,L} = \sum_{j=1}^{J} U_{l,j} \nu_{j,L}$

- Pontecorvo-Maki-Nakagawa-Sakata mixing matrix
- 3 mixing angles
- 1 (Dirac) / 3 (Majorana) CP violating phases

Introduction $\langle m_{\beta\beta} \rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$ $\Gamma_{0\nu} = G_{0\nu} g_A^4 |M_{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_{\rho}^2}$

- Neutrino-less double beta decay
- Cosmology
- Beta decay endpoint

[A. Strumia and F. Vissani, IFUP-TH2004-1; arXiv:0606054]

G S The CUORE experiment G S

The CUORE experiment

- Cryogenic Underground Observatory for Rare Events
- Hosted underground in the Hall A of the INFN Laboratori Nazionali del Gran Sasso
- 3600 m.w.e. rock overburden
- Main physics goal 0vββ
- High efficiency (source = detector)
- Ton scale bolometer array

G S S I ~ 10 mK operating temperature

G S The CUORE experiment **Operating principles**

[M. Vignati, Journal of Applied Physics 108, 084903-1]

S

Heat bath - 10 mK (copper)

Thermal coupling (Teflon)

> Thermistor (NTD-Ge)

Absorber crystal (TeO_2)

Time (s)

[C. Alduino et al., JINST 11 P07009 (2016)]

Crystals instrumented with

- NTD Ge thermistor
- Si heater

Weak thermal link to heat bath

Particle interactions in the crystals heat them up

Constant NTD current bias produces voltage pulses from temperature variations

The CUORE experiment

- 988 5x5x5 cm³ crystals arranged in 19 towers of 52 channels each
- Total active mass 742 kg
- High natural isotopic abundance (~206 kg ¹³⁰Te)
- Multi-stage cryogen-free ³He/⁴He dilution refrigerator
- Pre-cooling supplied by Pulse Tube cryocoolers
- ~ 10 mK operating temperature

G S

S

Good energy resolution ~0.2% FWHM/E

The CUORE experiment

- Low background goal of 0.01 cts/(keV kg yr) at Q_{BB}
 - 18 cm polyethilene + 2 cm borated material
 - 30 cm lead
 - Inner ²¹⁰Pb depleted Roman lead shielding
- Thorough campaign of material assay
- Strict construction, transportation, assembly protocols
- Designed to reduce vibrations

[C. Alduino et al., Cryogenics 102, 9 (2019)]

Pulse Tubes noise reduction

The CUORE experiment **Detector operation**

G S S I

(kg·yr)

- Data taking started in Spring 2017
- CUORE "data set": ~1 month of background data taking with a few days of calibration at the start and end
- Unblinded accumulated exposure $372.5 \text{ kg} \cdot \text{yr}$
- Cryogenic facility for tonscale bolometer arrays

G

The CUORE experiment **Data processing**

90% efficiency trigger thresholds

G S

GS

The CUORE experiment **Data processing**

- A sample of clean noise waveforms is used to extract each channel's average noise
- A sample of clean particle pulses is used to compute the average response of each detector

GS

S

Average Noise Power Spectrum: ch. 542 - dss 3084

GS

GSI

- Amplitude extracted with matched filter

[C. Alduino et al., Phys. Rev. C 93, 045503 (2016)]

G

GS

GS

The CUORE experiment Resolution

G S S I

The CUORE experiment Detector response model

G S S I

- Fit ²⁰⁸TI line at 2614.5 keV in calibration spectra to precisely evaluate the lineshape on a channel-dataset basis
- Main peak parameterized with a 3-Gaussian superposition
- Fit run simultaneously on each tower to constrain backgrounds and side-structures

G

S

The CUORE experiment **Detector response model**

- Extract FWHM from peak fit to physics data
- Fit with 2nd order polynomial and extrapolation to any energy (e.g. $Q_{\beta\beta}$)
- Compute peak position residual from literature values
- Fit with 2nd order polynomial as a function of energy
- Resolution and energy scale uncertainty (systematics)

GS

S

ackground resolution vs.

The CUORE experiment Detector response model

- Reconstruction efficiency includes
 - Trigger
 - Event reconstruction
 - Pile-up rejection
- Anti-coincidence efficiency quantifies the probability of correctly identifying single-site events
- Pulse Shape Analysis (PSA) Efficiency: fraction of events selected in a 6-dimensional pulse-shape parameter space

Anti-Coincidence Efficiency

Give Search Ground State Analysis

Ground state analysis

[B. Singh, Nuclear Data Sheets 93, 33 (2001)]

G S S I

G

Signal events mostly single-site $\epsilon = 88.3(5)$ %

Ground state analysis $P(\vec{\theta} \mid \vec{E}, H_{S+B}) = \frac{\mathscr{D}(\vec{E} \mid \vec{\theta}, H_{S+B}) \cdot \pi(\vec{\theta} \mid H_{S+B})}{\int_{\Omega} \mathscr{D}\pi \vec{d\theta}} \mathcal{D}(\vec{E} \mid \vec{\theta}, H_{S+B}) = \prod_{dataset \ channel} \prod_{event \ i} \left(\frac{S}{\lambda} p df_{0\nu\beta\beta}(E_i \mid \vec{\theta}) + \frac{C}{\lambda} p df_{60}C_0(E_i \mid \vec{\theta}) + \frac{b}{\lambda} \frac{1}{\Delta E} \right) \right]$ Events [counts/2.5 keV] 200 **Blinded Peak** 150 100 ⁶⁰Co Sum Peak 2510 2520 2530 2540 2560 2570 2550 Reconstructed Energy [keV]

G S

S

Region Of Interest (ROI) [2490, 2575] keV

[C. Alduino et al., Phys. Rev. Lett. 124, 12 122501 (2020)]

Ground state analysis

Projected Sensitivity

[C. Alduino et al., Phys. Rev. Lett. 124, 12 122501 (2020)]

G S S I

10⁴ Toy Monte Carlo pseudo-experiments are generated and fit to extract the median sensitivity

G

S

G S

ance parameters, allow limit)

• No evidence for $0\nu\beta\beta$ decay

 $T_{1/2}^{0\nu} > 3.2 \times 10^{25} \text{ yr } (90\% \text{ C.I.})$

Interpretation in context of light Majorana neutrino exchange

$$m_{\beta\beta} < 75 - 350 \,\mathrm{meV}$$

Detector Performance Parameters Background Index

 $(1.38 \pm 0.07) \times 10^{-2} \mathrm{cnts}/(\mathrm{keV} \cdot \mathrm{kg} \cdot \mathrm{yr})$

Characteristic FWHM ΔE at $Q_{\beta\beta}$ $7.0 \pm 0.3 \text{ keV}$

G

ββ Search Excited State Analyses S S

G

S

Excited states analysis

GS SI

There are 3 possible de-excitation patterns:

A. (86%) $\beta\beta_{0-734} + \gamma_{1257} + \gamma_{536}$ B. (12%) $\beta\beta_{0-734} + \gamma_{671} + \gamma_{586} + \gamma_{536}$ C. (2%) $\beta\beta_{0-734} + \gamma_{1122} + \gamma_{671}$

Excited states analysis Full containment requirement

- Each final state particle (except neutrinos) must fully release its energy in no more than one crystal
- Not considering partially contained signatures
- Significantly simpler analysis

G S S I Significant efficiency loss due to this choice

Excited states analysis Labelling signatures

Let us build a **Multiplicity 3** (3 crystals involved) signature coming from deexcitation pattern A

G

Excited states analysis Experimental signatures

Excited states analysis Ranking experimental signatures

$$S(\epsilon_s, B_s) = \theta(B_s - 1) \frac{\epsilon_s}{\sqrt{B}} + \theta(1 - B_s) \frac{5\epsilon_s}{-\ln(3 \cdot 1)}$$

background-free background-dom

• Many possible signatures

GS

S

- Most contribute negligibly to the sensitivity
- A threshold of S > 5 % was set
- Three signatures account for 80-90% of the overall sensitivity

	$\begin{bmatrix} \mathbf{S}_{2\nu}(\mathbf{S}_{0\nu}) \\ \mathbf{Signature} \end{bmatrix}$	Crystal 1 [keV]	Crystal 2 [keV]	Crystal 3 [keV]
	39.8% (38.5%) 2A0-2B1	$egin{array}{lll} etaeta+\gamma_{(A2)}\ etaeta+\gamma_{(B3)}\ 536$ - $1270 \end{array}$	$egin{array}{c} \gamma_{(A1)} \ \gamma_{(B1)}+\gamma_{(B2)} \ 1257 \end{array}$	
	2.3% (2.3%) 2A1-2B2-2C1	$egin{aligned} & \gamma_{(A1)} + \gamma_{(A2)} \ & \gamma_{(B1)} + \gamma_{(B2)} + \gamma_{(B3)} \ & \gamma_{(C1)} + \gamma_{(C2)} \ & 1793 \end{aligned}$	ββ ββ ββ 0 - 734	
	21.6% (24.7%) 2A2-2B3	$egin{array}{c} etaeta+\gamma_{(A1)}\ etaeta+\gamma_{(B1)}+\gamma_{(B2)}\ 1257$ - 1991	$\gamma_{(A2)}$ $\gamma_{(B3)}$ 536	
	$\begin{array}{c} 25.5\% (20.3\%) \\ 3A0 \end{array}$	$egin{array}{c} \gamma_{(A1)} \ 1257 \ etaetaeta+\gamma_{(B2)}+\gamma_{(B3)} \ eta$	$\begin{array}{c} \beta\beta\\ 0 - 734\\ \hline \gamma_{(B1)}\end{array}$	$\begin{array}{c} \gamma_{(A2)} \\ 536 \end{array}$
	$\begin{array}{c} 2.4\% (2.8\%) \\ 2B0 - 2C2 \\ \hline 0.2\% (0.1\%) \end{array}$	$egin{array}{c} etaeta+\gamma_{(C1)}\ 1122\ ext{-}\ 1856\ \hline etaeta+\gamma_{(B2)}\ \hline etaeta+\gamma_{(B2)}\ \hline eta$	$\begin{array}{c} \gamma_{(C2)} \\ 671 \\ \hline \gamma_{(B1)} + \gamma_{(B3)} \\ \hline \end{array}$	
	$ \begin{array}{r} 2B4 \\ 1.4\% (2.0\%) \\ 2B5 \\ \end{array} $	$\begin{array}{r} 586 - 1320 \\ \beta\beta + \gamma_{(B1)} + \gamma_{(B3)} \\ 1207 - 1941 \end{array}$	$\begin{array}{c} 1207\\ \gamma_{(B2)}\\ 536\end{array}$	
	1.0% (0.9%) 2B6-2C0	$egin{array}{c} etaeta+\gamma_{(B1)}\ etaeta+\gamma_{(C2)}\ eta71$ - 1405 eta	$\gamma_{(B2)}+\gamma_{(B3)}$ $\gamma_{(C1)}$ 1122	
	1.1% (1.1%) 3B0	$egin{array}{c} etaeta+\gamma_{(B3)}\ 536$ - 1270 $\gamma_{(B2)}+\gamma_{(B3)} \end{array}$	$\begin{array}{c} \gamma_{(B1)} \\ 671 \\ \beta\beta \end{array}$	$\frac{\gamma_{(B2)}}{586}$
	0.8% (0.5%) 3B1-3C0 0.1% (0.1%)	$\gamma(C1)$ 1122	$\beta\beta$ 0 - 734	$\begin{array}{c} \gamma_{(C2)} \\ \gamma_{(C2)} \\ 671 \end{array}$
	$\begin{array}{c} 0.1\% (0.1\%) \\ 3B2 \\ \hline 1.3\% (1.0\%) \end{array}$	$egin{array}{c} \gamma_{(B1)}+\gamma_{(B2)}\ 1257\ etaetaeta+\gamma_{(B2)}\ etaeta+\gamma_{(B2)} \end{array}$	$\frac{\rho \rho}{0 - 734}$ $\gamma_{(B1)}$	$\begin{array}{c} \gamma_{(B3)} \\ 536 \\ \hline \gamma_{(B3)} \end{array}$
Э	3B3 0.1% (0.1%) 3B4	$\begin{array}{c c} 586 - 1320 \\ \hline \gamma_{(B1)} + \gamma_{(B3)} \\ 1207 \end{array}$	$\begin{array}{c} 671\\\\\beta\beta\\0-734\end{array}$	$\begin{array}{c} 536\\ \gamma_{(B2)}\\ 536\end{array}$
	$ \begin{array}{r} 1.5\% (1.0\%) \\ 3B5 \\ 0.8\% (0.6\%) \end{array} $	$egin{array}{c} etaeta+\gamma_{(B1)}\ 671$ - 1405 $etaeta\end{array}$	$\gamma_{(B2)}$ 586 $\gamma_{(B1)}$	$\gamma_{(B3)}$ 536 $\gamma_{(B2)}$
	4B0	0 - 734	671	586

 10^{-7})

minated

S

G S

keV²

Excited states analysis Ranking experimental signatures

			Ονββ
Scenario	Multiplicity	Score	Cut
2A0 - 2B1	2	39%	<u>1247 keV < E_{min} < 1280 keV</u>
			1247 keV < E _{max} < 1280 keV
2A2 - 2B3	2	25%	<u>523 keV < E_{min} < 573 keV</u>
			1981 keV < E _{max} < 2001 keV
3A0	3	20%	526 keV < E_{min} < 546 keV
			<u>700 keV < E_{med} < 760 keV</u>
			$1247 \text{ keV} < E_{max} < 1267 \text{ keV}$
			2νββ
Scenario	Multiplicity	Score	2vββ Cut
Scenario 2A0 - 2B1	Multiplicity 2	Score 40%	2νββ Cut 620 keV < E _{min} < 1150 keV
Scenario 2A0 - 2B1	Multiplicity 2	Score 40%	2νββ Cut 620 keV < E _{min} < 1150 keV <u>1220 keV < E_{max} < 1300 keV</u>
Scenario 2A0 - 2B1 2A2 - 2B3	Multiplicity 2 2	Score 40% 22%	2νββ Cut 620 keV < E _{min} < 1150 keV <u>1220 keV < E_{max} < 1300 keV</u> <u>523 keV < E_{min} < 573 keV</u>
Scenario 2A0 - 2B1 2A2 - 2B3	Multiplicity 2 2	Score 40% 22%	$\frac{2\nu\beta\beta}{Cut} \\ 620 \text{ keV} < E_{min} < 1150 \text{ keV} \\ \underline{1220 \text{ keV}} < E_{max} < 1300 \text{ keV} \\ \underline{523 \text{ keV}} < E_{min} < 573 \text{ keV} \\ 1360 \text{ keV} < E_{max} < 1990 \text{ keV} \\ \end{aligned}$
Scenario 2A0 - 2B1 2A2 - 2B3 3A0	Multiplicity 2 2 3	Score 40% 22% 26%	$\begin{array}{l} 2\nu\beta\beta\\ \hline Cut\\ 620\ keV < E_{min} < 1150\ keV\\ \underline{1220\ keV < E_{max} < 1300\ keV}\\ \underline{523\ keV < E_{min} < 573\ keV}\\ 1360\ keV < E_{max} < 1990\ keV\\ 400\ keV < E_{min} < 523\ keV\end{array}$
Scenario 2A0 - 2B1 2A2 - 2B3 3A0	Multiplicity 2 2 3	Score 40% 22% 26%	$\begin{array}{l} 2 \nu \beta \beta \\ \hline Cut \\ 620 \ keV < E_{min} < 1150 \ keV \\ \underline{1220 \ keV < E_{max} < 1300 \ keV} \\ \underline{523 \ keV < E_{min} < 573 \ keV} \\ 1360 \ keV < E_{max} < 1990 \ keV \\ 400 \ keV < E_{min} < 523 \ keV \\ \underline{523 \ keV < E_{min} < 573 \ keV} \\ \underline{523 \ keV < E_{med} < 573 \ keV} \end{array}$

GSI

- Blind selections (defined on MC simulations) in ordered energy space
- Expected background shape: flat or linear
- No background peaks expected

G

Excited states analysis Containment efficiency

Once the selection cuts are fixed, the efficiency is obtained from a fit to Monte Carlo simulations of signal events

42

G

Excited states analysis Model

$$\log \mathscr{L}_{s,ds}(\overrightarrow{E} \mid \overrightarrow{\theta}, H_{S+B}) = -(\lambda_{s,ds}^{(S)} + \lambda_{s,ds}^{(B)}) + \sum_{avc} (A_{s,ds}^{(S)} + \lambda_{s,ds$$

Bayesian Analysis (BAT)

G S S I

- Likelihood model: linear background, peak for $\beta\beta/\gamma$
- Unbinned fit on physical range (nonnegative rate), uniform prior on Γ
- Systematics addressed repeating fit with additional nuisance parameters

$\sum \log \left[\lambda_{s,ds}^{(S)} \frac{M\Delta t_{ch}}{M\Delta t_{ds}} pdf^{(S)}(\vec{E}) + \lambda_{s,ds}^{(B)} \frac{M\Delta t_{ch}}{M\Delta t_{ds}} pdf^{(B)}(\vec{E}) \right]$ $ev \in (s, ds)$

$$\epsilon_{s} = \left[\sum_{p} BR_{p} \cdot \frac{\left[N_{MC}^{(sel)}\right]_{p}^{(s)}}{\left[N_{MC}^{(tot)}\right]_{p}}\right] \epsilon_{cut}^{M} \epsilon_{acc}$$

leading efficiency term

Process	Containment	Cut	Accidentals	Tota	
0νββ	10.0%	00 70/	00 70/	8.7%	
2νββ	6.8%	88.7%	98.7%	5.9%	
Effective efficiencies					
TITCOCIAC CITICICI					

containment summed over signatures other components exposure averaged

G

S

GS

Excited states analysis Blinded fit (0vββ)

- data

G S

S

GS

Excited states analysis Ονββ unblinded fit and sensitivity

Marg. Post.	Mean	St. Dev.	Units
Rate	6.37	4.85	10 ⁻²⁶ 1/yr
b (2A0-2B1)	2.15	1.38	10 ⁻⁴ cts/(keV kg yr)
b (2A2-2B3)	2.56	1.20	10 ⁻⁴ cts/(keV kg yr)
b (3A0)	5.67	5.42	10 ⁻⁵ cts/(keV kg yr)

G

$$T_{1/2}^{0\nu} > 5.4 \times 10^{24} \text{ yr} (90 \% \text{ C}.\text{ I.})$$

Excited states analysis 2vββ unblinded fit and sensitivity

Marg. Post.	Mean	St. Dev.	Units
Rate	3.33	2.18	10 ⁻²⁵ 1/yr
b (2A0-2B1)	3.01	0.33	10 ⁻³ cts/(keV kg yr)
b (2A2-2B3)	4.23	0.49	10 ⁻³ cts/(keV kg yr)
b (3A0)	5.37	5.36	10 ⁻⁵ cts/(keV kg yr)
slope (3A0)	-5.17	4.23	10 ⁻³ 1/keV

G S S I

G S

3A0

Expected limit setting sensitivity - Median: 1.66e+24 [yr] MAD: 3.99e+23 [yr] 200 180 160 140 120 100 80 60 40 20 1000 2000 3000 4000 5000 ProjectedEnergy (keV) 90 % C.I. marginalized limit on T12 = ln(2)/Rate [yr]

$$T_{1/2}^{2\nu} > 1.1 \times 10^{24} \text{ yr} (90 \% \text{ C}.\text{ I.})$$

systematics not included

Excited states analysis Systematics

Nuisance Parameter	Prior	0νββ ΔT ⁹⁰ _{1/2}	2 uetaeta $\Delta T^{90}_{1/2}$
Detector response	multivariate	10.1%	17.6%
Cut efficiency	gaussian	-0.1%	< 0.1%
PSA efficiency	uniform	-0.7%	-0.2%
Accidental coincidences	gaussian	-0.4%	0.1%
Containment efficiency	gaussian	-0.6%	-0.4%
Isotopic abundance	gaussian	-0.1%	-0.2%
Combined	multivariate	10.1%	17.2%

[G. Fantini et al., paper in preparation]

S Marginalized posterior pdf 0.012 P(Γ I data 90% C.I. 0.008 0.006 $T_{1/2}^{0\nu} > 5.9 \times 10^{24} \text{ yr} (90 \% \text{ C}.\text{ I.})$ 0.004 0.002 0 0.1 0.2 0.3 0.5 0.6 Г [yr⁻¹] 0.4 Marginalized posterior pdf 0.022 P(Γ I data) 0.02 90% C.I. 0.014 0.012 0.01 $T_{1/2}^{2\nu} > 1.3 \times 10^{24} \text{ yr} (90 \% \text{ C}.\text{ I.})$ 0.008 0.006 0.004 0.002 0 0.5 1.5 2.5 Γ [yr⁻¹]

G

Excited states analysis

[C. Alduino *et al.*, Eur. Phys. J. C **79**, 795 (2019)]

This work: [G. Fantini et al., paper in preparation]

[P. Pirinen, J. Suhonen, Phys. Rev. C 91, 054309 (2015)]

[B. Lehnert, 10.1051/epjconf/20159301025]

G

S

Summary

- Original contributions to the CUORE analysis
- New result on the double beta decay to excited states both in the neutrino-less and Standard Model mode
- No evidence for signal in either mode
- A factor 5 more stringent Bayesian limit with respect to the current most sensitive search (CUORE-0)

Backup

Effective Majorana Mass Interpretation

 $m_{\beta\beta} < 75 - 350 \,\mathrm{meV}$

NMEs Used

- [57] J. Engel and J. Menéndez, Rept. Prog. Phys. 80, 046301 (2017).
- [58] J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C91, 034304 (2015).
- [59] F. Šimkovic *et al.*, Phys. Rev. C87, 045501 (2013).
- [60] J. Hyvärinen and J. Suhonen, Phys. Rev. C91, 024613 (2015).
- [61] J. Menéndez et al., Nucl. Phys. A818, 139 (2009).
- [62] T. R. Rodriguez and G. Martinez-Pinedo, Phys. Rev. Lett. **105**, 252503 (2010).
- [63] N. López Vaquero, T. R. Rodríguez, and J. L. Egido, Phys. Rev. Lett. **111**, 142501 (2013).
- [64] J. M. Yao *et al.*, Phys. Rev. **C91**, 024316 (2015).
- [65] M. T. Mustonen and J. Engel, Phys. Rev. C87, 064302 (2013).
- [66] A. Neacsu and M. Horoi, Phys. Rev. **C91**, 024309 (2015).
- [67] A. Meroni, S. T. Petcov, and F. Simkovic, JHEP **02**, 025 (2013).

G

See-saw mechanism

$$\mathscr{L}_{D+M} = -\bar{N}_L^c M N \qquad N_L = \begin{bmatrix} \nu_L \\ \nu_R^c \end{bmatrix} \qquad M = \begin{bmatrix} m_L & m_D \\ m_D & m_R \end{bmatrix}$$

$$m_{\pm} = \frac{m_R}{2} + \frac{m_R}{2}\sqrt{1 + \frac{4m_D^2}{m_R^2}}$$

Assuming SU(3)_C x SU(2)_L x U(1)_Y gauge invariance and renormalizability $m_L = 0$ m_D of the order of the Higgs v.e.v., m_R arbitrarily large

$$\begin{array}{ccc} m_R \gg m_D & m_+ \sim m_D^2 / m_R \\ \hline m_- \sim m_R \end{array}$$

ga quenching

- Parameterization of theory vs experiment mismatch
- Difference between the Gamow-Teller calculation and experimental results in beta-decay motivates quenching $g_A^{e\!f\!f} = q \; g_A$
- Important uncertainty in neutrino-less double beta decay NME
- Ab-initio calculations including twobody / meson-exchange currents and additional nuclear correlations do not need any "quenching"

[Gysbers et al., Nature Physics 15, 428-431 (2019)]

Background model

 $T_{1/2}^{2\nu} = [7.71^{+0.08}_{-0.06}(\text{stat.})^{+0.17}_{-0.15}(\text{syst.})] \times 10^{20} \text{ yr}$

G S

GEANT4 simulation + detector response function to produce 7000 cuore pretexpected spectra 6000 5000 62 sources considered, Bayesian fit 4000 flat priors (except muons) 3000 2000 <u>Coincidences</u> and self-shielding exploited to constrain source position 1000

Baryon Asymmetry in the Universe

Sakharov Conditions

- Baryon number violation
- C-symmetry and CP symmetry violation
- Interactions out of thermal equilibrium

CP violation in the quark sector is not enough to explain the observed asymmetry

Baryogenesis via leptogenesis is a possibility

$$\eta = \frac{n_B - \bar{n}_B}{n_{\gamma}} \sim 10^{-10}$$

$$\frac{D_{CKM}}{T_{sph}^{12}} \sim 10^{-20} \ll \eta$$

