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@ Introduction and overview



Universality, scaling limits and Renormalization Group

The scaling limit of the Gibbs measure of a critical
stat-mech model is expected to be universal.

Conceptually, the route towards universality is clear:

O Integrate out the small-scale d.o.f.,
rescale, show that the critical model
reaches a fixed point (Wilsonian RG).

@ Use CFT to classify the possible fixed
points (complete classification in 2D;
recent progress in 3D).
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Challenge: Prove universality starting from an
explicit class of microscopic Hamiltonians.



In this talk: review selected results on universality of
non-integrable 2D models. Focus on: Ising models.
Let Q C R?, a = lattice spacing, Q, := aZ?> N Q.
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‘Interacting’ Ising

Let Q C R?, a = lattice spacing, Q, := aZ?> N Q.
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where:

o (x,y) indicates n.n. sites in €,

o0y ==xland ox =[[,cx 0

o V(X) finite-range, transl. inv., even; X\ small

o Boundary conditions: open, periodic, or +/—
Gibbs measure:

Ly

ﬁaQ o

:uﬁaQ(A



Phase transition

Take a fixed, Q  R?. Known:

o Small enough 3: unique infinite volume Gibbs
state with exp. decaying correlations.

o Large enough [3: two distinct pure states with
ug;aRz(ax) +#+ 0 & exp. decaying truncated corr.

o If AV >0, unique value of 3, called 5. = (),
separating magnetized from non-magnet. phase.

Expected: at § = [, unique infinite volume Gibbs
state, denoted

A li A
) 2> = |IIm .
IU/,BC,Q,R Q/\RQ ’LbﬁcyayQ’

with polynomially decaying correlations.



Critical theory

Expected: fix § = [, fix §, rescale spin variables:
0(x) = a0, () = a N 0x0rag 11 anl0x0xa2))
Then take a — 0: the limit
lim 150 0(0(x0) -+ o) (v1) -+~ £, (vim)

should exist and satisfy remarkable properties. E.g.,
o Be independent of A, up to a finite multiplicative
renormalization, and equal to the correlations of
the minimal CFT model with ¢ = 1/2.
o Be conformal covariant under Riemann mapping
of Q — Q. Correlations in any domain obtained
from those in the half-plane.



Universal finite-size corrections

Fix 8 = B, fix Q, compute the free energy
log Zj ., = a *|Qf(A) + a 1|0Q|7(\) + ca(a, A).
Here f(\) and 7()\) independent of Q2. Expected: if
x = Euler number #£ 0, and ¢ = % = central charge:
lim ca(a, ) = —lcx'
a—0 log(a=1|0Q|) 6
if y=2—2h— b =0, then

Iing) ca(a,\) =S independent of \.
a—

E.g., if Q = torus with aspect ratio &,
1
cS = log( + 03+ 04) — = |og(4929394),

™) are Jacobi theta functions.

where 0; = 0;(e”



Recent results

In recent years, constructive RG allowed us to prove
some aspects of the picture above for A small:

o for 2 plane or finite cylinder, we constructed the
scaling limit of multi-point energy correlations;

o for Q torus, we proved ¢} ~ Zc€ as { — oc.

In these lectures: focus on 1% result. Proof for finite
cylinder very recent, it opens several perspectives:

o scaling limit of energy corr. in rectangles

o computation of ¢ in finite tori and cylinders

and of lim,_o % in rectangles



@ Nearest neighbor Ising: selected results



Nearest neighbor Ising

If A=0,
H = —JZO’XUy,
(x.y)

the model is exactly solvable: solution due to
Onsager, Kaufman, Yang, Kasteleyn, Kac-Ward,
Montroll-Potts-Ward, Schultz-Lieb-Mattis, McCoy-
-Wu, Tracy, Barouch, Perk, Kadanoff-Ceva, ...

E.g., fix a and send Q " R?: closed formulas for the
free energy, specific heat, magnetization, energy and
spin correlations (alongspecial directions) are known.



Nearest neighbor Ising: scaling limit

At B, = 8 \[H) 0 polynom. decay of corr™

From epr|C|t formulas, scaling limit in the plane:

A
. 0 . o
lm) ,uﬂc;a,Rz(O'(X)O'(y)) = m, A =0.70338016 - - -
) 1 1
lm M(ﬂ)c;a,R2(€j1(X)€j2(y)) - F |X — y|2

More in general, the n-point energy correlations are
lim 1, o ge(Ea(x0) -5, 00)) = 7 "IPFK (21, 22) 2

where z; = (X_/)l + I(X_/)2 and K,‘J‘(Zl, ce ,Zn) = ZI’L'TéJ



Nearest neighbor Ising: spin-spin correlations

The general formula for the scaling limit of 2n-point
spin can be guessed by CG/CFT methods, but
remained elusive for many years. Recently proved by
Dubedat, Chelkak-Hongler-Izyurov:

Iim ,u% are(o(x) - o(xn) =

(&) Ik

€1y--,E2p=7 1<l<_]<2n
e1t-+e2,=0

1/2

551/2}

Other domains: in the half-plane, similar formulas
(via ‘image method’). More general domains, via
Riemann map (Smirnov, Chelkak-Hongler-Izyurov)



@© 'Interacting’ Ising: main results



Interacting Ising: energy correlations in the infinite plane.

Theorem 1 (G-Greenblatt-Mastropietro 2012)

Let V(X) be finite-range, rotation-symmetric and A

small enough. There exists 5. = (), analytic in A,

s.t., letting ug Lge = im0 ,ug 2 forany n>1
crey cr9y L

. Z\"
im 123 0 22(5.00) -+ 25, (xa)) = (5 ) IPFK (21, . 20)

a—0

where Z = Z(\) = 1+ O(\) is analytic in .



o Main steps of proof: (i) represent. of generating
function of correlations as a non-Gaussian
Grassmann integral, (ii) RG computation thereof

o The RG proof provides explicit bounds on the
speed of convergence of the finite-a n-point
energy correlations as a — 0.

o A and V can have either signs.

o Rotational invariance unimportant.

o We also control the massive scaling limit
B(a) = Bc(A) +ag5. In this case, the interacting
propagator has dressed mass m = mgp(1+ O()\)).

o If B # Bc(A), proof much easier. At finite a,
exp. decay with correlation length o a.



The method of proof is (too heavily) based on
translational invariance, which guarantees that:
@ quadratic part of the effective action is explicitly
diagonalizable at all RG steps;
Q@ the effective couplings are constants, rather
than functions of the position.
Important to develop RG w/o translational inv. for:
@ proving conformal covariance of the scaling limit
under deformations of the domain;
@ computing boundary critical exponents (in 2D Ising,
dimer, vertex models, in 1D quantum spin chains, etc.);
@ understanding critical models with defects (Kondo

problem, Many Body Localization, etc.)



Interacting Ising: energy correlations in the cylinder.

Theorem 2 (Antinucci-G-Greenblatt 2020)

Same assumptions as Thm 1, same . = B.(\) and
Z = Z(A). Domain Q2 = cylinder of sides (1, (5, with
p.b.c. in the horizontal direction. For any n > 1,

H Z ¢ SCa
lim 123,04 0a) -+ 23,00)) = (= ) PF| 11,85 (5. )]

where i,j € {1,...,n}, w, € {%£}, and:
g2 (x,y) = Z(—1)”[iuw/(X—y+€n)—wﬁdw/(x—)”/Jré,,)]

neZ2

b= (mb,2mb), % = (x1,—x), F(x) = (3 2)

X2 —X1



o Bounds uniform in ¢1,¢,. Letting (1, {, — o0,
we obtain the correlations in the half-plane.

o Key new ingredients, compared with Thm 1:
(1) proof that the scaling dimension of boundary operators
is better by one dimension than their bulk counterparts,
(2) a cancellation mechanism based on an approximate
image rule for the fermionic propagator allows us to

control the RG flow of the marginal boundary terms.



@ Sketch of the proof



@ Nearest-neighbor Ising <+ Gaussian Grassmann
integral = free fermions

@ Non-integrable Ising = non-Gaussian Grassmann
integral (‘fermionic ¢3 theory’)

Q@ Integrate out ‘massive’ degrees of freedom

@ Multiscale integration of the ‘massless’ d.o.f.:

scaling dimensions (quartic interaction: irrelevant),
localization and renormalization,

control flow of running coupling constants via counterterms,
dimensional gains from bulk/edge decomposition, ...



Step 1: nearest-neighbor Ising <+ dimers

Well known (Fisher 1966): nearest neighbor Ising
(in high temperature contour representation: gas of polygons v with

prob. weight (tanh 8J)"1) = dimers on ‘Fisher lattice’




Step 1: nearest-neighbor Ising <+ dimers

Well known (Fisher 1966): nearest neighbor Ising

(in high temperature contour representation: gas of polygons v with

prob. weight (tanh 8J)"1) = dimers on ‘Fisher lattice’
DIMER

CONFIGURATION

IS'NG ON THE
VERTEX 6- SITE

CONFIGURATION C'-USITER

o ﬁ)& o L

ot

@ — w} ® =1

A g

L




Step 1: Kasteleyn's theorem

Let Z0 = Zg;a,Q- If Fq, is Fisher lattice on €,
Z° = dimers on Fo = Pf(K),  with:

o K Kasteleyn matrix (complex adjacency matrix) ON FQQ
o Pf(K) the Pfaffian of K, where:

1
2nn| Z(_l)ﬂATr(l)ﬂ(Q) e A7r(2n—1)7‘r(2n) — :I:\/detA

Pf(A) =

for any 2n x 2n anti-symmetric matrix A.

Convenient way of representing Pf(A): in terms of a
Gaussian Grassmann integral.
Advantage: easy to compute minors of K~! in terms of ‘fermionic Wick

rule’ (very convenient for computing non-Gaussian perturbations thereof)



Step 1: Grassmann variables

Finite label set | with |/| = 2n. Grassmann
variables: ¢ = {9, }aes s.t. {ta, 3} = 0.

Grassmann algebra = set of Grassmann polynomials

Q(Y) = cot Z cLiYi+ Z Co.ii i+ -+ Copthr - 1oy

1<i<2n 1<i<j<2n

Analytic function of ) = (truncated) Taylor series, e.g.,
e = 14 ciniy

Grassmann integration:

/ DY Q) = e



Step 1: Gaussian Grassmann integration

/D¢ o3 i Vil = /D¢ es(VAY) _ Pf(A)

1 1
PfA Dw € wawﬁ ( )aﬁ
1 1
_— 3(0AY) L _
pra | PV & o o

_ Z (—1)P H (A o5 = Pf(Guyay)

pairings p (aB)ep

where G,,..., is the minor of A~! consisting of the
rows & columns labelled aq, ..., a.



Step 1: n.n. Ising <+ Gaussian Grassmann integral

Putting things together:

Z° = dimers on Fq, = Pf(K) = / Depez(V:Kv),



Thank you!
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