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Problems:

1. There are many possibilities

2. The transition densities 
     are not strongly constrained
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1. Pions are bosons

2. Can be produced at low temperature

3. ⇡±
has a lifetime of about 10

�8
s

The process                        is Pauli blocked if                     and the pion becomes stable ⇡+ ! `+⌫` µ` > m⇡
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with Carignano, Lepori, Mammarella,  Pagliaroli.
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What for?

Nuclear matter in 
compact stars

Understanding QCD
In a regime in which different 
methods overlap

1. Pions are bosons

2. Can be produced at low temperature
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Fermi pressure
(+interactions)

Gravity 
(+interactions)

Balance of forces

The pressure is mostly given by the degenerate Fermi pressure 
(no nuclear fusion)

Configuration depends on the Equation of state (EoS)
In compact stars the temperature is typically negligible 

p ⌘ p(⇢, T )

Compact Star

M ⇠ 1.4M�

R ⇠ 10km



Discriminating the stars by mass and radius? 
• Precise simultaneous  mass and radius measurements are  difficult
• The masses are known only in binary systems
• The radii are indirectly estimated
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Discriminating the stars by mass and radius? 
• Precise simultaneous  mass and radius measurements are  difficult
• The masses are known only in binary systems
• The radii are indirectly estimated

Better look at a different observable...
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Radial Oscillations

F. Di Clemente, MM and F. Tonelli 



Test the stellar stability
gµ⌫ = diag(e2�,�e2�,�r2,�r2 sin2 ✓)Linearly perturb the metric

and the thermodynamic quantities p, ⇢

with �r = X(r)ei!t

define ⇠ = Xr2e��
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Test the stellar stability
gµ⌫ = diag(e2�,�e2�,�r2,�r2 sin2 ✓)Linearly perturb the metric

and the thermodynamic quantities p, ⇢

with

(P ⇠0)0 = �(!2W +Q)⇠ Sturm-Liouville equation

!2⇠ = A⇠

⇠t = (⇠1, ..., ⇠N )where

by discretization we have an eigenvalue problem

�r = X(r)ei!t

define ⇠ = Xr2e��



Numerical results
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Conclusions

•Compact stars are valuable probes of hadronic matter

•Equilibrium configurations, when pressure counteracts the 
gravitational pull

•We have a precise algorithm for the radial oscillation of 
compact stars. Look for a behavior that discriminates standard 
neutron stars from exotic ones.



Thanks for your attention!


