Gran Sasso Science Institute - February 25, 2020

The High Altitude Nater Cherenkov Observatory

Miguel Alejandro Mostafá Professor of Physics, Astronomy and Astrophysics

Outline

Introduction & Motivation

The HAWC Observatory

Recent results

Outlook

Duldig, Science 314 (2006) 429-430

UHECR detection_{*}

Auger Collaboration, Science 357 (2017) 1266-1270

 $E > 8 \text{ EeV}; 45^{\circ} \text{ smoothing}$

NASA's Fermi telescope resolves supernova remnants at GeV energies

- First resolved TeV γ-ray image of a Shell type SNR (Resolution ~10 arcmin)
- Acceleration source of cosmic rays, but is it evidence of protons?

- First resolved TeV γ-ray image of a Shell type SNR (Resolution ~10 arcmin)
- Acceleration source of cosmic rays, but is it evidence of protons?

- First resolved TeV γ-ray image of a Shell type SNR (Resolution ~10 arcmin)
- Acceleration source of cosmic rays, but is it evidence of protons?

Tanaka et al., The Astrophysical Journal 685 (2008) 988

Leptonic

VS.

Hadronic

Scientific Motivation

- Constrain the origin of cosmic rays by measuring gamma-ray spectra to 100 TeV.
- Probe particle acceleration in astrophysical jets with wide field of view, high duty factor observations.
- Explore new physics with an unbiased survey of the TeV sky.

Experimental Techniques

- ✓ Background free
- ✓ Large duty cycle
- ✓ Large aperture

- Small area

Space-based detectors Low energy threshold EGRET, Fermi-LAT

Experimental Techniques

- ✓ Large effective area
- Excellent background rejection

- Small aperture
- Low duty cycle

Imaging Atmospheric Cherenkov Telescopes High sensitivity HESS, MAGIC, VERITAS

Experimental Techniques

- ✓ Large aperture
- Excellent background rejection
- ✓ Large duty cycle

- Moderate area
- Ground array of air-shower particle detectors Large aperture + High duty cycle Milagro, Tibet, ARGO, HAWC

HAWC

- 2nd generation water Cherenkov
- Wide instantaneous field of view (2 sr)
- High duty cycle (> 90%)
- Large area (22,000 m²)

A second generation wide-field γ -ray detector

Main Features

- Most bright Galactic GeV sources
 extend to TeV
- Best instrument for hard spectrum and extended sources

The HAWC Observatory

300 - 7 m x 5 m steel Water Cherenkov Detectors (a.k.a. tanks) with 4 PMTs at 4,100 m a.s.l. in Mexico

300 - 7 m x 5 m steel Water Cherenkov Detectors (a.k.a. tanks) with 4 PMTs at 4,100 m a.s.l. in Mexico

300 - 7 m x 5 m steel Water Cherenkov Detectors (a.k.a. tanks) with 4 PMTs at 4,100 m a.s.l. in Mexico

Effect of the laser calibration on the observation of the shadow of the Moon

o deflection matches 2 TeV median energy

- angular resolution < shadow width of 1.2°</p>
- o position verifies pointing

HAWC site

HAWC site

LMT (4,600 m)

Pico de Orizaba (18,500 ft)

Deployment status

From 2011 to 2015

Deployment status

From 2011 to 2015

Design improvements

Design improvements

Fermi-LAT sky smoothed map E > 50 GeV (Pass 8 - 6 years of data) (courtesy of M. Ajello)

Design improvements

Science Kesults

Penn State HAWCers in Mexico (2017)

Abeysekara et al [HAWC] ApJ 843 (2017) 39 The Crab

Abeysekara et al [HAWC] ApJ 843 (2017) 39 The Crab

Abeysekara et al [HAWC] ApJ 843 (2017) 40

first HAWC catalog

2HWC J1930+188

- coincident with VER J1930+188
 SNR G54.1+00.3 PSR J1930+1852
- TeV emission was reported to be pointlike and likely from PWN
 nearby molecular CO cloud

VERITAS pt-src upper limit
 ~1.4% of Crab

2HWC J1927+187*

- associated with 2HWC J1930+188?
- ongoing analysis on spatial morphology

[VERITAS+Fermi-LAT+HAWC!] ApJ 866 (2018) 24

Abeysekara et al [HAWC] ApJ 843 (2017) 40

Abeysekara et al [HAWC] ApJ 843 (2017) 40

ZHWC J1939+2270

Geminga

Abeysekara et al [HAWC] Science 6365 (2017) 911-914

Positron excess from nearby pulsars?

Dec. [deg]

Abeysekara et al [HAWC] Science 6365 (2017) 911-914

Abeysekara et al [HAWC] Science 6365 (2017) 911-914

Estimated positron energy flux at Earth

Abeysekara et al [HAWC] Nature 562 (2018), 82-85

VHE emission from the jets of a microquasar

Abeysekara et al [HAWC] Nature 562 (2018), 82-85

VHE emission from the jets of a microquasar

Recent Developments

Elemen

Penn State HAWC group at home (2018)

Abeysekara et al [HAWC] ApJ 881 (2019) 134

Abeysekara et al [HAWC] Phys. Rev. Lett. 124 (2020) 021102

γ -ray sky above 56 TeV

Abeysekara et al [HA

FIG. 3 of the PRL

Outriggers

Outlook: HAWC South

Conclusions

Main results

irsa Minor

Coma Beregifes

HydroTi

30

Sextans

Can's Major

/_30

Conak-60max

Sculpt

Extended regions, transient events, highest energies

Other results

Pisces

- Dark matter, extended regions, • diffuse emission, cosmic rays, ...
- EBL, solar physics, ...

Sagittan.

30

Region C Region B Region A Ursa Major I Wittend Major I PSR 80540+23 & HAVIS[0543+233 Triangulum II Segue II Segue9 0 කො

Conclusions

Main results

Extended regions, transient
 events, highest energies

Conclusions

Main results

 Extended regions, transient events, highest energies

Other results

- Dark matter, extended regions, diffuse emission, cosmic rays, ...
- EBL, solar physics, ...

Multi-wavelength physics

- MoUs with IceCube, IACTs, etc
- AMON
- HAWC alerts

Outlook

- Array of Outriggers
- Southern Observatory

The HAWC Collaboration

Recent HAWC publications

- "Multiple Galactic Sources with Emission Above 56 TeV Detected by HAWC," Physical Review Letters 124 (2020) 021102
- "Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC," The Astrophysical Journal 881 (2019) 134
- "Searching for dark matter sub-structure with HAWC," Journal of Cosmology and Astroparticle Physics 07 (2019) 022
- "MAGIC and Fermi-LAT gamma-ray results on unassociated HAWC sources," Monthly Notices of the Royal Astronomical Society 485, 356 (2019)
- "All-sky Measurement of the Anisotropy of Cosmic Rays at 10 TeV and Mapping of the Local Interstellar Magnetic Field," The Astrophysical Journal 871, 96 (2019)
- "Very-high-energy particle acceleration powered by the jets of the microquasar SS 433," Nature 562, 82-85 (2018)
- "Constraints on spin-dependent dark matter scattering with long-lived mediators from TeV observations of the Sun with HAWC," Physical Review D 98, 123012 (2018)