Low-mass dark matter and neutrino-less double beta decay searches with the DarkSide technology

Maria Bossa 19 December 2019 GSSI, L'Aquila

Outline

- Low-mass dark matter search
 - DarkSide-50 detector
 - Results of DarkSide-50
 - The future of the DarkSide program: DarkSide-20k
- Neutrino-less double beta decay search
 - LAr-LXe DarkSide detector

The DarkSide-50 Detector

Situated in the Hall C of the Laboratori Nazionali del Gran Sasso, DarkSide-50 is constituted by three nested detectors:

- an external muon veto
- a neutron veto
- a two-phase time projection chamber (TPC) serving as the dark matter detector

The Water Cherenkov Veto

A cylindrical water tank filled with ultra pure water and instrumented by 80 photomultiplier tubes (PMTs)

The neutron veto

A stainless steel sphere filled with boron loaded scintillator and instrumented with 110 PMTs

 ${}^{10}B + n \rightarrow {}^{7}Li(1015keV) + \alpha(1775keV)$ ${}^{10}B + n \rightarrow {}^{7}Li^* + \alpha(1471keV)$ ${}^{7}Li^* \rightarrow {}^{7}Li(839keV) + \gamma(478keV)$

The Time Projection Chamber

The Time Projection Chamber

Pulse shape discrimination

$$f_{prompt} = \frac{\sum_{i} PE_{i,prompt}}{\sum_{i} PE_{i}}$$

Pulse shape discrimination

The maximum separation is obtained in the first 90 ns of the prompt signal

The importance of underground Argon

Sources of background are beta and gammas originated from the material of the TPC and from the decay of ${}^{39}\!Ar$ contained in atmospheric argon.

Comparison of the measured field off spectra for the UAr (blue) and AAr (black) targets normalised to exposure. Phys. Lett. B 743, 456 (2015).

Latest result of DS-50

Spin-independent cross section exclusion limit (C.L. 90%) from the 532.4 live days campaign.

DS-50 and low mass dark matter

World best limit for low-mass dark matter search in the mass range of 1.8 GeV/ c^2 to 6.0 GeV/ c^2

The future: DarkSide-20k

- Octagonal prism TPC contained in an ultra pure acrylic vessel (PMMA)
- Filled with 48 ton of active UAr
- The LSV will be replaced by Gd-loaded passive shield
- The 38 PMTs will be substituted by ~ 8000 photodetector modules (PDMs)

Tiling and packaging PDMs

The PDM is the silicon-based equivalent of the PMT. Each PDM is formed by 24 SiPMs tile of size of 1 cm^2 , read out as a single analog channel.

in total ~8000 PDMs

Evolution of DarkSide

DarkSide-Proto

- Octagonal prism LAr TPC
- Edge of 30 cm, height of 60 cm
- 185 PDMs on top and bottom of the TPC
- Drift field 200 V/cm
- Top and bottom boundaries of 5 cm thick PMMA, instead of acrylic as in DS-50
- Inside surface coated with a conductive polymer (no more ITO)
- Extraction and electroluminescence of 2.8 kV/cm and 4.2 kV/cm
- Gas pocket of 7 mm

DarkSide-Proto purpose

- Serving as prototype of intermediate dimension (~1 t) to validate DS-20K technologies
- TPC mechanics, all structural elements will be built as a scaled-down version of DS-20k detector.
- Dark matter search in the mass range of 0.6 GeV/ c^2 to tens of GeV/ c^2

Troubles in low mass dark matter region

- Efficiency for detecting S1 is low -> PSD is no more available
- The most significant background are gammas and betas
- Nuclear recoils below 10 keV_{nr} ->efficiency in detecting S1 is very low
- Mechanisms producing neutrons are extremely rare
- Neutron veto loss its importance

Background sources

- Internal backgrounds: events due to radioactive elements dissolved in the active UAr target: ${}^{39}Ar, {}^{37}Ar, {}^{85}kr$
- External background: events originating from radioactivity in the construction materials of the LAr TPC and cryostat: ${}^{60}Co$, ${}^{40}K$, ${}^{232}Th$, ${}^{238}U$, ${}^{235}U$
- Cosmogenic background: events originating from the residual cosmic ray flux in the Hall C of LNGS.

Background simulations

This work intends to be a study of the possible geometries of a future detector featuring the DarkSide technology to optimize the sensitivity to low mass dark matter WIMP-like particles.

The principle steps of the study are:

- Simulation of nuclear decays of the radioisotope mentioned in every detector component with G4DS toolkit
- Spectrum of ionization electrons generated by background events
- Comparison of background spectra and the one expected for WIMP interaction-> sensitivity of the detector.

Background simulations

- We define a cluster as one or more energy deposits which occur at a distance greater than of 2 mm on z-axis and within a time window of 2 μ s -> position and energy of the cluster
- Need to convert energy cluster in number of electrons that will produce by electroluminescence the S2 light signal

Finite resolution of the detector is reproduced by a gaussian smearing on x-y position reconstruction via S2 signal ~2 cm. 21

Background simulation: cuts

To further remove background events:

- Single scatter cut: all events with more than one interaction in the active volume are rejected
- **Fiducial cut**: we remove events near the walls of the TPC, with a distance greater than 5 cm.

Fiducial volume: 267 kg.

Detector configurations

- First configuration: DS-Proto is inside the LSV filled with ultra-pure water. The TPC is installed in a double wall stainless steel cryostat vessel (1.25 cm and 1.75 cm internal and external wall thickness). Electrodes of PMMA of 5 cm thick.
- Second configuration: Removing LSV and inserting the LAr-TPC at the centre of a huge cryostat of 5 m diameter and 6 m height filled with liquified AAr. I will name this geometry as DarkSide-LowMass.

Detector configurations

First Configuration

DS-Proto

Second Configuration

DS-LowMass

DS-Proto first configuration: components and materials

Components	Material	Mass (kg)
Cryostat	Stainless steel	2300
Reflector	PMMA	89
Windows	PMMA	67
PDMs	Various	370
Target	UAr	260

DS-Proto first configuration: activities

 μ Bq/kg or μ Bq/PDM

Material	238 U	²²⁶ Rn	235	²³² Th	⁴⁰ K	⁶⁰ Co	³⁹ Ar
Stainless steel	2600	2600	26	1400	<3700	<650	0
PMMA	120	120	1.2	41	0	0	0
PDMs	4200	4400	0	3400	<1900	<82	0
UAr	0	0	0	0	0	0	730

DS-Proto first configuration: background spectrum

The major contribution to background comes from the activity of ³⁹Ar of the UAr target

DS-Proto second configuration: activities

235 40**K** 60**Co Material** 238 J ²²⁶Rn 232Th ³⁹Ar **Stainless** 2600 2600 26 1400 <3700 <650 0 steel **PMMA** 120 1.2 0 0 120 41 0 **PDMs** 4200 <82 4400 0 3400 <1900 0 7.3 UAr 0 0 0 0 0 0

 μ Bq/kg or μ Bq/PDM

DS-Proto second configuration: background spectrum

Having suppressed the activity of ³⁹Ar the leading background becomes the activity of stainless steel

DS-LowMass first configuration: materials and components

Components	Material	Mass (kg)		
Cryostat	Stainless steel	13000		
Reflector	PMMA	89		
Windows	PMMA	67		
PDMs	Various	370		
Target	UAr	260		

DS-LowMass first configuration: activities

 μ Bq/kg or μ Bq/PDM

Material	238	²²⁶ Rn	235	²³² Th	40 K	⁶⁰ Co	³⁹ Ar
Stainless steel	2600	2600	26	1400	<3700	<650	0
PMMA	120	120	1.2	41	0	0	0
PDMs	4200	4400	0	3400	<1900	<82	0
UAr	0	0	0	0	0	0	7.3

DS-LowMass first configuration: background spectrum

DS-LowMass second configuration: what's new

- Stainless steel cryostat -> DUNE cryostat, so no background from stainless steel.
- Reduction of number of divider chain resistors from 52 to 8 per PDM; reduction of the masses of 2 order of magnitude ->strong R&D effort ongoing at LNGS
- High purity PMMA->ultra pure PMMA developed for JUNO detector
- Increase of PMMA thickness from 5 cm to 15 cm->shield against anode PDMs radioactivity

DS-LowMass second configuration: materials and components

Components	Material	Mass (kg)
Reflector	PMMA	300
Windows	PMMA	310
PDMs	Various	370
Target	UAr	260

DS-LowMass second configuration: activities

Material	238 U	²²⁶ Rn	235 U	²³² Th	40 K	⁶⁰ Co	³⁹ Ar
PMMA	3.7	3.7	0	5.3	<2600	0	0
PDMs	570	170	20	140	<360	<22	0
UAr	0	0	0	0	0	0	7.3

 μ Bq/kg or μ Bq/PDM

DS-LowMass second configuration: background spectrum

DS-LowMass sensitivity

90% C.L exclusion curves projected for 1 and 3 years of exposure. For masses below 8 GeV/c² can increase of about two order of magnitude the sensitivity of DS-50.

Darkside technology for neutrino-less double beta decay search

DarkNoon conceptual geometry

- The TPC LAr is an octagonal prism, 670 cm height and 175 cm side, contained in a ultra pure PMMA vessel. The thickness of PMMA is 25 cm in all directions.
- The cryostat is a DUNE-like cryostat of infinite dimensions->external background is negligible
- TPC is filled with a mixture of LAr and LXe enriched in ¹³⁶Xe at the level of 90%. The detector is an idealised study with a LXe mass fraction of 45%

DarkNoon materials and components

Components	Material	Mass (kg)
Vessel	PMMA	36703.8
PDMs	Various	8280
Target	¹³⁶ Xe	74600
Target	other Xe	82888.9
Target	UAr	20000

DarkNoon activities

Material	238 U	²²⁶ Rn	235 U	²³² Th	⁴⁰ K	⁶⁰ Co	³⁹ Ar
PMMA	0.4	0.4	0	0.5	<250	0	0
PDMs	6	2	0.2	1	<4	<0.2	0
UAr	0	0	0	0	0	0	7.3

Background sources

- Long lived nuclides: radionuclides coming from decay chain of ²³⁸U and ²³²Th, but I considered only ²¹⁴Bi an ²⁰⁸TI
- Cosmogenically created radionuclides: activation of ¹³⁷Xe. I considered the estimation made by nEXO Collaboration at SNOLAB depth: 2.2 x 10⁻³/(kg d)
- Neutrino induced background: solar neutrinos coming from 8B reaction chain produce a continuous spectrum covering the full energy range of interest.

Background simulation

- Event reconstruction as for DarkSide low mass
- Application of cuts:
 - Single scatter cut
 - Fiducial cut: no fiducial cut, 30 cm, 50 cm
 - Consistency cut

Background spectrum

Background spectrum

Background spectrum

Physics potential

Cherenkov effect as background strategy

- Irriducible background due to ⁸B neutrinos
- Single electron of double beta decay of ¹³⁶Xe in the ROI

Cherenkov effect as background strategy

- Cherenkov light has UV to visible photon emission
- Directionality correlated to the direction of the primary beta track
- Photon number proportional to the primary beta track length

Simulation strategy

- Single beta events of energy of 2.5 MeV and 0nubb of ¹³⁶Xe are produced in the mixture of LAr-LXe (80%-20% molar mass) and in pure LXe
- 2. Starting from the generated electrons I generate photons according to $\frac{d^2 E}{dxd\omega} = \frac{q^2}{4\pi} \mu(\omega) \omega \left(1 \frac{c^2}{v^2 n^2(\omega)}\right)$
- I assume that the refractive index is constant from 200 to 800 nm

Simulation results

51

- The track length of single and double beta particles in pure LXe is shorter than in the mixture of LAr-LXe.
- The LAr-LXe mixture gives a better discrimination in Cherenkov photon number.

Cut efficiency at different Xe concentration in LAr-LXe

A 5% concentration of Xe in the mixture of LAr-LXe performs the best signal efficiency and rejection background

The sensitivity vs Efficiency of Cherenkov cut

Maximum sensitivity at 20% molar Xe, but also a 15% molar mass of Xe is comparable

Result

Taking into account the reached sensitivity and imagining to increase the exposure to 1000 tonne_{iso} y

