

L'Aquila - 14/11/2018

Multí-messenger studíes of NS mergers, GRBs and magnetars

Simone Dall'Osso

OUTLINE

1. Overview of GW/EM discoveries since 2015

- binary black hole mergers
- binary neutron star mergers
- electromagnetic counterpart(s)

- 2. Magnetars: what we know and what we think we know
 - observed properties of magnetars in the Milky Way
 - possible formation scenarios and proposed association with gamma-ray bursts

3. Magnetars: GW emission and future work on EM counterparts

GRAVITATIONAL WAVES

GRAVITATIONAL WAVE DETECTORS

THE ADVANCED INTERFEROMETERS

SENSITIVITY CURVES

FUTURE GW DETECTORS

THE ADVANCED INTERFEROMETERS

FUTURE GW DETECTORS

GW SOURCES

A. <u>Coalescing Binary NS/BH systems</u>

 $h \sim 10^{-20-23}$ for $D \sim 1-200 Mpc - v 0.1-2 kHz$

B. <u>Core-Collapse Supernovae</u>

$$E_{kin} \sim 10^{-4} - 10^{-8} M_{sun} c^2$$

 $h \sim 10^{-20 \div -26}$ for $D \sim 10 \, \text{Kpc} - \nu 0.2 - 1 \, \text{kHz}$

C. Fast spinning NS with "mountains" $E_{kin} < 10^{-10} M_{sun} c^2$ $h < 10^{-26}$ for $D \sim 10 \text{ Kpc} - v \ 10 - 600 \text{ kHz}$

Abbott et al. 2016

Source redshift z

GW event	Energy radiated (c ² M _©) ^[n 3]	Chirp mass (M _☉) ^[n 4]	Primary		Secondary		Remnant				
			Туре	Mass (M _©)	Туре	Mass (M _©)	Туре	Mass (M _©)	Spin ^[n 5]	Inspiral	Merger Ring- down
GW150914	3.0 ^{+0.5} -0.5	28.2 ^{+1.8} -1.7	BH (n 6)	35.4 ^{+5.0} -3.4	BH [n 7]	29.8 <mark>+3.3</mark> _4.3	BH	62.2 <mark>+3.7</mark> -3.4	0.68 +0.05 -0.06		
LVT151012	1.5 ^{+0.3} -0.4	15.1 ^{+1.4} 15.1 _{-1.1}	вн	23 ⁺¹⁸ -6	вн	13 ⁺⁴ 13 ₋₅	вн	35 ⁺¹⁴	0.66 ^{+0.09} -0.10		
GW151226	1.0 ^{+0.1} -0.2	8.9 ^{+0.3} -0.3	вн	14.2 <mark>+8.3</mark> -3.7	вн	7.5 <mark>+2.3</mark> -2.3	вн	20.8 <mark>+6 1</mark> 7	0.74 ^{+0.06} -0.06		
GW170104	2.0 ^{+0.6} -0.7	21.1 +2.4 -2.7	вн	31.2 <mark>+8.4</mark> -6.0	вн	19.4 <mark>+5.3</mark> -5.9	вн	48.7 <mark>+</mark> 5 7 _4 6	0.64 +0.09	VVVVV	/////m
GW170608	0.85 ^{+0.07} -0.17	7.9 ^{+0.2} _{-0.2}	вн	12 +7 12 -2	вн	7 <mark>+2</mark>	вн	18.0 <mark>+4.</mark> 18.0 <u>-0.</u>	0.69 +0.04 -0.05	Numerical relativity Reconstructed (template)	V V I -
GW170814	2.7 ^{+0.4} -0.3	24.1 ^{+1.4} -1.1	вн	30.5 ^{+5.7} -3.0	вн	25.3 <mark>+2.8</mark> _4.2	BH	53.2 ^{+3.2} -2.5	0.70 ^{+0.07} -0.05	5	4 ⁽²⁾
<u>GW170817</u>	> 0.025	1.188 +0.004 -0.002	NS	1.36 - 1.60 ^[n 8]	NS	1.17 - 1.36 ^[n 9]	BH [n 10]	< 2.74 ^{+0.04} _0.01 [n 11]		Black hole separation Black hole relative velocity	- 1 ar
			-							0.30 0.35 0.4	۵ 0.45 Ö

Time (s)

Primary black hole mass $36^{+5}_{-4}M_{\odot}$ Secondary black hole mass $29^{+4}_{-4}M_{\odot}$ Final black hole mass $62^{+4}_{-4}M_{\odot}$ Final black hole spin $0.67^{+0.05}_{-0.07}$ Luminosity distance 410^{+160}_{-180} MpcSource redshift z $0.09^{+0.03}_{-0.04}$

Binary Black Holes

- **1. First direct detection of GWs**
- 2. First direct detection of BHs
- 3. First direct detection of binary BHs
- 4. First direct measurement of BH spin

Abbott et al. 2017 Time (seconds)

GW 170817

LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-HXMT Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech-NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The ROOTES Collaboration MWA: Murchison Widefield Array, The CALET Collaboration, IKL CW Fellow, up

Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT

- 1. First joint detection of a GW source and its EM counterpart
- 2. First direct detection of a NS merger
- 3. First direct confirmation that NS mergers are progenitors of (at least^{or} a class of) short gamma-ray bursts
- 4. First observation of a kilonova associated to dynamically ejected material from the merger
- 5. Confirmation of binary NS mergers as the production sites for the *r*-process elements.

GW 170817

LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-HXMT Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech-NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT

Bartos et al. 2013

Three possible outcomes:

- 1. <u>stable NS</u>, if $M < M_{max}$ requires $M_{max} > 2.35 M_{\odot}$ (e.g., **Dall'Osso** et al. 2015, Piro et al. 2017)
- 2. <u>hypermassive (centrifugally supported) NS</u>: collapse after some spindown
- 3. <u>collapse to a BH</u>: ring down gives mass and spin of the BH

Open problems:

1. Component masses in the pre-merger system suggest the gravitational mass of the remnant

$M \lesssim 2.4~{\rm M}_\odot$

Collapse likely but there are EoS's that can support a stable NS with this mass.

2. The ejecta mass $M_{\rm ej} \gtrsim 0.05 \, {\rm M}_{\odot}$ exceeds the maximum mass that was expected in *ALL* pre-discovery models/numerical simulations $M_{\rm ej,exp} \leq 0.01 \, {\rm M}_{\odot}$

3. The lack of a clear EM signature of a highly energy NS in the early day after the merger suggests there was no energetic NS. However, models are still based on over-simplified assumptions: need to develop more realistic scenarios, also in perspective (more discoveries expected in the future).

4. If the gamma-ray counterpart of GW170817 was actually a short-GRB then it was a very ``unlikely'' event (*a priori* a chance) \leq a few percent at most.

MAGNETARS

Making a magnetar Mot, newborn star Hot, newborn star churns and mixes Internal convection carries off heat If spinning faster than 200 revolutions/second, builds up the magnetic field

<u>ms-spinning proto-NS</u>

differential rotation \leftrightarrow *toroidal* magnetic field B~10¹⁶G

<u>magnetic energy dissipation powers</u> <u>high-energy emission from here on</u>

Thompson & Duncan 1993→ 2001

The lack of isolated magnetars with spin period longer than ~ 12 s implies that the magnetic dipole must decay on timescale < 10^4 yrs.

The bright X-ray emission that is observed at ages $> 10^4$ yrs implies requires a stronger magnetic field in the interior

(e.g. Dall'Osso, Granot & Shaviv 2012; Vigano', Pons & Perna 2013; Beloborodov 2016)

ms-spinning proto-NS

differential rotation \leftrightarrow *toroidal* magnetic field B~10¹⁶G

<u>magnetic energy dissipation powers</u> <u>high-energy emission from here on</u>

Thompson & Duncan 1993→ 2001

PARADIGM

A ms-spinning, highly magnetized NS radiates its huge spin energy to magnetic dipole radiation - or similar - in (much) less than 1 day.

<u>ms-spinning proto-NS</u>

differential rotation \leftrightarrow *toroidal* magnetic field B~10¹⁶G

<u>magnetic energy dissipation powers</u> <u>high-energy emission from here on</u>

PARADIGM

Thompson & Duncan 1993→ 2001

A ms-spinning, highly magnetized NS radiates its huge spin energy to magnetic dipole radiation - or similar - in (much) less than 1 day.

secular bar-mode instability $\frac{T}{|W|} \gtrsim 0.14 \Rightarrow T \lesssim 2 \times 10^{52} \text{ erg s}^{-1}$ growth time ~ $10^2 - 10^3 \text{ s}$

The non-axisymmetric NS spins down sweeping the LIGO/Virgo range from ~200 Hz to ~30 Hz

 $\chi \neq 0$ Excites free body precession

PROLATE DISTORTION

 $\omega = \epsilon_{B} \Omega \cos \chi$ Mestel & Takhar (1972)

 $\epsilon_{B} \sim 10^{-3} B_{16}^{2}$

Dall'Osso et al. 2009, 2015,2017

cf. Cutler (2002)

 $E_{spin} \sim (2-10) \ 10^{52} erg \sim 0.015 \ P^{-2}_{ms} \ M_{\odot}c^2$

 $\chi \neq 0$ Excites free body precession

PROLATE DISTORTION

 $\omega = \epsilon_{B} \Omega \cos \chi$ Mestel & Takhar (1972)

 $\epsilon_{B} \sim 10^{-3} B_{16}^{2}$

cf. Cutler (2002) **Dall'Osso** et al. 2009, 2015,2018

 $E_{spin} \sim (2-10) \ 10^{52} erg \sim 0.015 \ P^{-2}_{ms} \ M_{\odot}c^2$

Magnetic dipole spindown ~ 10^3 - 10^5 s GW emission in ~ 10^2 - 10^4 s

BULK VISCOSITY:

depends on chemical composition and EoS (Prakash 1998, Haensel et al. 2001; **Dall'Osso,** Stella & Palomba 2018)

EVENT RATE

<u>core-collapse</u>

Optimistic: ≤ 0.5 year from Virgo Cluster "Realistic": ≤ 1 every ~30-50 yrs within 5 Mpc (Dall'Osso et al. 2018)

TO BE DONE:

- a. characterize magnetar population based on EM properties (GRBs SLSNe) and theory
- b. develop effective strategies to detect the expected GW signals from nearby starburst (adv LIGO/Virgo) or from within ~ 30 Mpc (ET)
- c. develop effective strategies to reveal the expected EM counterparts (SN, KN, shock break-out).

NS mergers

<u>Stable</u>: $\sim (0.1-0.3) / \text{yr if } M_{\text{max}} > 2.35 M_{\odot}$

<u>unstable</u>: will need 3G detectors

EM SIGNATURE OF NEWBORN MAGNETARS

ACCRETION ONTO MAGNETISED NS

$$\left[\begin{array}{c} r_{m} \sim r_{A} \propto \dot{M}^{-2/7} B^{4/7} \\ N_{mat} \sim \dot{M} (G M r_{m})^{1/2} \end{array} \right]$$

 \rightarrow Material torque: specific angular momentum at r_m

$$r_{co} = \left(\frac{GM}{\Omega^2}\right)^{1/3} \sim 2 \times 10^8 \, cm \, \left(\frac{P_{spin}}{1.37 \, s}\right)^{2/3} M_{1.4}^{1/3} \longrightarrow \text{ accretion} \text{ if } r_m < r_{co} \text{ (NS spin-up, } r_{co} \text{ moves in)}$$

if $r_m > r_{co} \longrightarrow propeller phase$: the NS spins down, r_{co} moves outwards

ACCRETION ONTO MAGNETISED NS

No accretion/spindown

$$r_m \sim r_A \propto \dot{M}^{-2/7} B^{4/7}$$

 $N_{mat} \sim \dot{M} (G M r_m)^{1/2}$

 \longrightarrow Material torque: specific angular momentum at r_m

$$r_{co} = \left(\frac{GM}{\Omega^2}\right)^{1/3} \sim 2 \times 10^8 cm \left(\frac{P_{spin}}{1.37 s}\right)^{2/3} M_{1.4}^{1/3} \longrightarrow \text{accretion} \text{ if } r_m < r_{co} \text{ (NS spin-up, } r_{co} \text{ moves in)}$$

if $r_m > r_{co} \longrightarrow propeller phase$: the NS spins down, r_{co} moves outwards

EM SIGNATURE OF NEWBORN MAGNETARS

equilibrium at $r_m = r_{co}$

$$\frac{B}{10^{14}G} \approx 15 \left(\frac{P_{\rm eq}}{1\rm ms}\right)^{7/6} \left(\frac{M}{1.4M_{\odot}}\right)^{5/6} \left(\frac{\dot{M}}{0.01M_{\odot}/\rm s}\right)^{1/2} \left(\frac{R}{12\rm \ km}\right)^{-3}$$

The model allows to infer the main characteristics of the prompt emission based *only* on the observed plateau's.

UNDER WAY: furthert investigation of the scenario and comparison with the available data

CONCLUSIONS & OUTLOOK

- 1. Future runs of Adv. LIGO/Virgo might be able to detect for the first time the signal from a newborn NS in a nearby starburst Galaxy
- 2. These will have robust and easy-to-detect EM counterparts (a SN, or a kilonova). In addition, there may be additional and brighter EM signatures (e.g., a GRB, a SLSN, a shock break-out, etc).
- 3. Top priority at this stage: observation and data analysis efforts, in order to be ready to reveal both the GW and EM transients associated to the newborn NS.

4. Theoretical work: developing more realistic models, urged to correctly extract physics information from multi-messenger observations

5. Theoretical work II: need for investigating specific signatures of a newborn magnetar in other channels (neutrino, cosmic rays).