

Candidate: Emanuela Celi

Advisors: Prof. Fernando Ferroni Prof. Lorenzo Pagnanini

Searching for new physics in $2\nu\beta\beta$ with scintillating cryogenic calorimeters

Ph.D. thesis defence XXXV cycle — 16/05/2024

Outline

Double-β decays

Scintillating cryogenic calorimeters

CUPID-0 combined background model

CUPID-Mo BSM studies

CUPID sensitivity

Conclusion and outlook

Double-ß decays

In nature, only a subset of even-even nuclei through double-β decay.

This can happen when the attractive nuclear interaction adds binding energy to nuclei with numbers of protons and neutrons.

$\begin{array}{c cccc} \mbox{Isotopic abundance (\%)} & \mbox{Enrichment} \\ \hline & & & & & & & & & & & & & & & & & &$	_			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Isotope	Isotopic abundance $(\%)$	Enrichment (?
$\begin{array}{cccc} & 7^{6}{\rm Ge} & 7.8 & 92 \\ {\rm could} decay & {}^{82}{\rm Se} & 8.7 & 96 \\ & {}^{96}{\rm Zr} & 2.8 & 86 \end{array}$	-	^{48}Ca	0.187	16
could decay ^{82}Se 8.796 ^{96}Zr 2.886		$^{76}\mathrm{Ge}$	7.8	92
96 Zr 2.8 86	decay	$^{82}\mathrm{Se}$	8.7	96
	•	$^{96}\mathrm{Zr}$	2.8	86
^{100}Mo 9.8 99		^{100}Mo	9.8	99
116 Cd 7.5 82		$^{116}\mathrm{Cd}$	7.5	82
t pairing ¹³⁰ Te 34.08 92	ng	$^{130}\mathrm{Te}$	34.08	92
th even ¹³⁶ Xe 8.9 90	n	136 Xe	8.9	90
150 Nd 5.6 91		$^{150}\mathrm{Nd}$	5.6	91

Half-life from $10^{18} - 10^{21}$ yr

Isotope	$Q_{\beta\beta}$ [MeV]	$T_{1/2}^{2\nu}$ [yr]
⁴⁸ Ca	4.263	$6.4^{+0.7}_{-0.6}~{ m (stat.)}^{+1.2}_{-0.9}~{ m (syst.)} imes10^{19}$
⁷⁶ Ge	2.039	2.022 ± 0.018 (stat.) \pm 0.038 (syst.) $ imes$ 10^{21}
⁸² Se	2.998	$8.69 \pm 0.05~{ m (stat.)}^{+0.09}_{-0.06}~{ m (syst.)} imes 10^{19}$
⁹⁶ Zr	3.348	2.35 ± 0.14 (stat.) \pm 0.16 (syst.) $ imes$ 10^{19}
¹⁰⁰ Mo	3.035	7.07 ± 0.02 (stat.) \pm 0.11 (syst.) $ imes$ 10^{18}
¹¹⁶ Cd	2.813	$2.63 \pm 0.01~({ m stat.})^{+0.11}_{-0.13}~({ m syst.}) imes 10^{19}$
¹³⁰ Te	2.527	$8.76^{+0.09}_{-0.07}~{ m (stat.)}^{+0.14}_{-0.17}~{ m (syst.)} imes10^{20}$
¹³⁶ Xe	2.459	2.165 ± 0.016 (stat.) \pm 0.059 (syst.) $ imes$ 10^{21}
¹⁵⁰ Nd	3.371	$9.34 \pm 0.22~(ext{stat.})^{+0.62}_{-0.60}~(ext{syst.}) imes 10^{18}$

- Lepton number violating process not conserving the B-L symmetry of the SM
- Only practical way to probe that neutrinos are Majorana particles, validating the so called "see-saw" mechanism

Isotope	$T_{1/2}^{0\nu}$ [y]
⁷⁶ Ge	$> 1.8 imes 10^{26}$
⁸² Se	$>4.6 imes10^{24}$
¹⁰⁰ Mo	$> 1.8 imes 10^{24}$
¹¹⁶ Cd	$> 2.2 \times 10^{23}$
¹³⁰ Te	$> 2.2 \times 10^{25}$
¹³⁶ Xe	$> 2.3 imes 10^{26}$

Mass Number

Effective Majorana Mass, the parameter of interest

m^{NN}_{β}	7 Be 5	- IB - QRF - NS - IMSR - IMSR 	A A G J=	³ I U =1	$\sum_{j=1}^{2} m_{j}$		$U_{e1}^2 m_1$	+ U	$e_2^2 e^{i\beta_1} w$	$\imath_2 + \frac{1}{1}$	U_{e3}^2
ov short /(3	-		Isoto	pe	$T_{1/2}^{0\nu}$ [y]	$m_{\beta\beta}$ [eV]		_
Σ	2	_ _ _		⁷⁶ Ge		> 1.8	$ imes 10^{26}$	< (0.	079 – 0.1	180)	-
	1			⁸² Se		> 4.6	$ imes 10^{24}$	< (0.	263 - 0.5	545)	
	0		Ι	^{100}M	lo	> 1.8	$ imes 10^{24}$	< (0.	280 - 0.4	490)	
	U			¹¹⁶ Co	d	> 2.2	$ imes 10^{23}$	< (1.	0 - 1.7)		
				130 Te	9	> 2.2	$ imes 10^{25}$	< (0.	090 – 0.3	305)	
				¹³⁶ Xe	5	> 2.3	$ imes 10^{26}$	< (0.	036 – 0.3	156)	

What about 2vββ? Can we use it to search for new physics?

2vββ spectrum: HSD vs. SSD

$$\frac{\Gamma_{2\nu}}{\ln 2} = [T_{1/2}^{2\nu}]^{-1} = G_{2\nu} |M_{2\nu}|^2$$

- * $G_{2\nu}$ is the Phase Space Factor (PSF)
- * $M_{2\nu}$ is the Nuclear Matrix Element (NME)

Assumptions on the energy of the intermediate nuclear state:

- ◆ Single-state dominance (SSD)→ ¹⁰⁰Mo and ⁸²Se
- Higher-state dominance (HSD) or Closure approximation (CA)

2vßß improved description

Instead of approximating SSD or HSD, the $2\nu\beta\beta$ PSF is written as a sum of components representing a Taylor expansion in terms of the lepton energies:

$$\Gamma_{2\nu} = \left| M_1^{2\nu} \right|^2 \left\{ G_0^{2\nu} + \xi_{31}^{2\nu} G_2^{2\nu} + \frac{1}{3} \left(\xi_{31}^{2\nu} \right)^2 G_{22}^{2\nu} + \left[\frac{1}{3} \left(\xi_{31}^{2\nu} \right)^2 + \xi_{51}^{2\nu} \right] G_4^{2\nu} \right\}$$

When $\xi_{31}^{2\nu}$,

 $\xi_{31}^{2\nu}$ and $\xi_{51}^{2\nu}$ determine the shape of the spectrum

$$\xi_{51}^{2\nu} = 0 \rightarrow \text{HSD}$$

Or $\xi_{31}^{2\nu}$, $\xi_{51}^{2\nu} \neq 0 \rightarrow SSD$ (the values depend on the nucleus)

```
Instead of making assumptions, the values of
             \xi_{31}^{2\nu}, \xi_{51}^{2\nu} can be measured
```

Phys.Rev.C 97 (2018) 3, 034315

Exotic double-ß decays

Majoron emitting modes

Majorons are massless bosons resulting from the spontaneous B–L symmetry breaking in the low-energy regime.

One $(\beta\beta\chi_0)$ or two $(\beta\beta\chi_0\chi_0)$ Majorons can be emitted according to the different models

The parameter of interest is the neutrino-Majoron coupling:

$$[T_{0\nu M}^{1/2}]^{-1} = G_{0\nu M} \left| \left\langle g_{ee}^{M} \right\rangle \right|^{2m} \left| M_{0\nu M} \right|^{2}$$

Lorentz violating 2vßß

The Standard Model Extension predict the existence of Lorentz Violating (LV) fields.

In the neutrino sector it can modify the decay rate of $2\nu\beta\beta$

$$\Gamma = \Gamma_{SM} + 10 \cdot \dot{a}_{of}^{(3)} \cdot \Gamma_{LV}$$

 $\dot{a}_{of}^{(3)}$ is the countershaded operator and determines the strength of the Lorentz violating effect.

11

Sterile neutrino emission

If the sterile neutrino *N* has a mass $m_N < Q_{\beta\beta}$, it can be emitted instead of an antineutrinos in the $2\nu\beta\beta$ ($\nu N\beta\beta$):

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + \bar{\nu} + N$

The effect on the total decay rate is:

 $\Gamma = \cos^4 \theta \Gamma_{SM} + 2\cos^2 \theta \sin^2 \theta \Gamma_{\nu N}$

Where $\sin^2 \theta$ is called active-sterile mixing strength

Outline

Double-β decays

Scintillating cryogenic calorimeters

CUPID-0 combined background model

CUPID-Mo BSM studies

CUPID sensitivity

Conclusion and outlook

Plenty of experimental techniques

Xenon time projection chambers 136**Xe** [EXO-200, nEXO, NEXT]

Large liquide scintillators 136**Xe** [KamLAND-Zen, SNO+] <

> **Tracking calorimeters** ¹⁰⁰Mo, ⁸²Se + others [NEMO-3, SuperNEMO]

+ many others

Cryogenic calorimeters for Ovßß searches

$$\Delta T(t) = \frac{\Delta E}{C} \exp\left(-\frac{t}{\tau}\right)$$
 where $\tau = \frac{C}{G}$

Performances

- Excellent energy resolution (<1% at 3 MeV)</p>
- High detection efficiency, the emitting isotope * is embedded in the detector
- Possibility to study different ββ emitters (and take those with higher $Q_{\beta\beta}$)
- Radio-pure materials
- Mass scalability *

CUORE experiment

Degraded α-particles

- A significant background come from degraded a-particles from contamination in passive material
- * Needs for a technique able to **distinguish a-particles** from β/γ radiation
- Further background reduction with high Q-value isotopes

Scintillating cryogenic calorimeters

- * Absorber: scintillating crystals at cryogenic temperatures (ZnSe, Li₂MoO₄, etc...)
- Light Detector: thin Germanium wafer coupled to the absorber working as a cryogenic calorimeter
- The particle identification can be done with by detecting the amount of light emitted (Light Yield) or the pulse shape of light signals

From CUORE to CUPID

CUORE

- ✤ 20 Li₂MoO₄ crystals
- 20 Ge light detectors
- ✤ 2.3 kg of ¹⁰⁰Mo
- * BI ~ 3.9×10^{-3} ckky

CUPID-0

- 26 ZnSe crystals
- 31 Ge light detectors
- 5.2 kg of ⁸²Se *
- * BI ~ 4.0×10^{-3} ckky

- ✤ 988 TeO₂ crystals
- 206 kg of ¹³⁰Te **
- Largest cryogenic facility in the world
- * BI ~ 1.5×10^{-2} ckky
- No particle identification

CUPID-Mo

CUPID - next generation

- ✤ 1596 Li₂MoO₄ crystals
- 1710 Ge light detectors
- ✤ 240 kg of ¹⁰⁰Mo
- ✤ Target BI ~ 10⁻⁴ ckky
- Re-use of CUORE cryogenic facility

Outline

- Double-β decays
- Scintillating cryogenic calorimeters
- CUPID-0 combined background model
- CUPID-Mo BSM studies
- CUPID sensitivity
- Conclusion and outlook

The CUPID-0 detector

- ✤ 24 ZnSe crystals enriched at >95% of ⁸²Se + two natural ones + 31 Ge Light detectors
- Located at LNGS
- ★ $Q_{\beta\beta}(^{82}Se) = \sim 2998 \text{ keV} \rightarrow \text{low background}$ region
- NTD-Ge thermistors as temperature sensors
- Total mass: 10.5 kg ZnSe *

In Jan 2019 the CUPID-0 collaboration has made an upgrade of the detector, starting the so-called "Phase II" of the experiment.

Phase I 9.99 kg×y

Phase II 5.74 kg \times y

Phase I background model

- * Fundamental for the spectral shape reconstruction and identify dominant background sources
- Further precision with the integration of Phase II data •

Eur. Phys. J. C 79, 583 (2019)

- (10 mK)
- $2\nu\beta\beta$ is dominant up to 3 MeV

Background model - simulations

- A GEANT4 based software taking into account the detector geometry generates a series on Monte Carlo spectra
- The simulations are processed with a custom software to implement experimental features on simulated data (energy and time resolution, coincidences, particle identification...)

The background sources included follows the material components and the geometry. Degenerate spectra are grouped together in a single simulation

Phase-I \rightarrow Reflectors + Holders Phase-II \rightarrow Holders + 10mK

Background model - sources

- ★ Long-living radioisotope (²³²Th, ²³⁸U, ²³⁵U, ⁴⁰K) with the possible breaks of the chains → Crystals, Holders and Cryostat
- ★ Cosmogenic activation products of Copper and ZnSe (⁶⁵Zn, ⁶⁰Co, ⁵⁴Mn) → Crystals and Holders
- ♦ Muons → Environment
- * $2\nu\beta\beta$ using SSD approximation

Crystal contaminants are modeled with different depth profiles $e^{-x/\lambda}$

 λ = depth parameter assumed to be 10nm or 10 μ m

Background model - Fit

Binned simultaneous Maximum Likelihood fit using a Bayesian framework with a Markov Chain Monte Carlo (MCMC) approach.

Activity
$$\left[\frac{Bq}{kg}\right] = \frac{N_j \cdot N^{MC}}{Mass[kg] \times livetime[s]}$$

From the Bayes theorem the *joint posterior pdf* is

Posterior
$$\left(\overrightarrow{N} \mid \text{data}\right) \propto \prod_{i,b} \text{Pois} \left(n_{i,b} \mid f_i \left(E_{i,b} \mid F_i\right)\right)$$

Background model - Fit

Variable binning for low counts regions and peaks

Constraints on all the long living isotopes to have the same activity between phase-I and phase-II

+ priors based on previous experiments results and measured muon flux

Simultaneous fit on 8 experimental experimental spectra using JAGS, 78 simulations, with 17 couples of them constrained

This list of sources and this configuration of the parameters define the Reference fit

28

Fit systematics

Energy calibration: alternative energy scale * corrected for the ⁵⁶Co calibration residuals

⁹⁰Sr/⁹⁰Y

- **Source location** effects
- **Reduced list** of sources: remove sources which posterior p.d.f. is compatible with 0

Background in the ROI

- Simulations can reproduce the background in * the $0\nu\beta\beta$ ROI applying the same cuts used in experimental data
- The higher background in phase II is explained as an over-fluctuation

Component	$\mathbf{ROI}_{bkg} \mathbf{r}$	ate $[10^{-4} \text{ counts}/$	keV/kg/y
	phase-I (only)	phase-I (comb.)	phase-II
Crystals	$11.7 \pm 0.6 \ ^{+1.6}_{-0.8}$	$8.9 \pm 0.5 \ ^{+0.3}_{-0.4}$	7.6 ± 0.4
Near Components	$2.1 \pm 0.3 \ ^{+2.2}_{-1.0}$	$3.6 \pm 0.3 \ ^{+1.1}_{-1.4}$	5.4 ± 0.9
Cryostat & Shields	$5.9 \pm 1.3 \ ^{+7.2}_{-2.9}$	$8.0 \pm 1.5 \ ^{+3.3}_{-2.5}$	6.8 ± 1.0
Muons	$15.3 \pm 1.3 \pm 2.5$	$15.4 \pm 0.7 \pm 2.5$	15.3 ± 0.7
2 uetaeta	$6.0 \pm 0.02 \stackrel{+0.13}{_{-0.09}}$	$5.93 \pm 0.03 \stackrel{+0.04}{_{-0.02}}$	5.31 ± 0.03
Total	$41 \pm 2 {}^{+9}_{-4}$	$42 \pm 2 {}^{+4}_{-4}$	$40 \pm 2 {}^{+4}_{-2}$
Experimental	$35 \ _{-9}^{+10}$	$35 \ _{-9}^{+10}$	$55 \ ^{+15}_{-15}$

2vββ half-life measurement

Fit systematics combined with the 68% difference between the *Reference*

+Fit systematics (+1.0%)(-0.7%)+Stat. uncertainty $(\pm 0.6\%)$ (including efficiency and enrichment uncertainty) +Theoretical uncertainty $(\pm 0.3\%)$ (SSD vs. HSD) = (+1.2%)(-0.9%)

Final result:

 $T_{1/2}^{2\nu} = [8.69 \pm 0.05(\text{stat.})_{-0.09}^{+0.06}(\text{syst.})] \times 10^{19} \text{yr}$

In terms of NME:

$$\mathcal{M}_{2\nu}^{eff} = 0.0760 \, {}^{+ \, 0.0006}_{- \, 0.0007}$$

Published on PRL Phys.Rev.Lett. 131 (2023) 22

From BM to BSM studies

Phys. Rev. D 100, 092002 (2019)

The background model serves as a starting point in the search for exotic double-β decays

Majoron emitting modes in CUPID-0 phase I

Phys. Rev. D 107, 032006 (2023)

Outline

- Double-β decays
- Scintillating cryogenic calorimeters
- CUPID-0 combined background model
- CUPID-Mo BSM studies
 - CUPID sensitivity
 - Conclusion and outlook

The CUPID-Mo experiment

- 20 Li₂MoO₄ crystals enriched at >95% of ¹⁰⁰Mo+ 20 Ge Light detectors *
- Located at MODANE in EDELWEISS cryostat
- * $Q_{\beta\beta}(^{100}Mo) \sim 3034 \text{ keV}$
- NTD-Ge thermistors as temperature sensors
- Total exposure: $2.71 \text{ kg} \times \text{yr}$ *

Spectral shape studies - introduction

Type I: e.g. Majoron decays, where the BSM decay is completely unrelated to the SM $2\nu\beta\beta \rightarrow$ the lower the $2\nu\beta\beta$ decay rate, the higher the sensitivity (¹³⁶Xe)

Type II: e.g. Lorentz violation and Sterile neutrino emissions, where the BSM process is in competition with the SM $2\nu\beta\beta$ and tends to decrease the decay rate \rightarrow the higher the $2\nu\beta\beta$ decay rate, the higher the sensitivity (¹⁰⁰Mo)

Spectral shape studies - analysis

- 1. Simulate the BSM spectra with GEANT4
- 2. Add the BSM spectrum into the background model fit
- 3. Extract from the fit the marginalised posterior p.d.f. over the parameter of interest for each BSM process and integrate it to get the limit
- 4. Systematics: Binning, source location, $2\nu\beta\beta$ bremsstrahlung (±10%), Energy scale (±1 keV), Minimal model, ⁹⁰Sr/⁹⁰Y

¹⁰⁰Mo $2\nu\beta\beta$ half-life

 $7.07 \pm 0.02(\text{stat.}) \pm 0.1(\text{syst.}) \times 10^{18}$

Fixed 2νββ spectral shape under the SSD assumption

Fluctuating 2νββ spectral shape according to the improved description

The result can be compared with the other experiments Systematic effect never considered by any experiment before

Phys.Rev.Lett. 131 (2023) 16, 162501

Results: Majoron emitting decays

- The improved model has a large impact on the final limit
- * SSD limits are a factor 2 5 less stringent than NEMO-3, despite its exposure is 22 times higher than CUPID-Mo

		Γ		1		
_	_	_	_			

Deserventede	$T_{1/2}$		g^M_{ee}				
Decay mode	limit SSD [y] limit IM [y]		limit SSD	limit IM			
this work							
$\beta\beta\chi_0 \ (n=1)$	$2.4 imes10^{22}$	$1.6 imes 10^{22}$	(4.0 - 6.9)×10 ⁻⁵	(5.0 - 8.5)×10 ⁻⁵			
$\beta\beta\chi_0 \ (n=2)$	$5.8 imes10^{21}$	$2.7 imes 10^{21}$	-	-			
$\beta\beta\chi_0 \ (n=3)$	$2.2 imes 10^{21}$	$0.5 imes 10^{21}$	0.053	0.112			
$\beta\beta\chi_0\chi_0 \ (n=3)$	$2.2 imes 10^{21}$	$0.5 imes 10^{21}$	2.1	3.1			
$\beta\beta\chi_0\chi_0\ (n=7)$	2.2×10^{20}	$2.0 imes 10^{20}$	2.2	2.3			
	NEMO-3 [57, 60]						
$\beta\beta\chi_0 \ (n=1)$	$4.4 imes10^{22}$		$(3.0-5.1) imes 10^{-5}$				
$\beta\beta\chi_0 \ (n=2)$	$9.9 imes10^{21}$		-				
$\beta\beta\chi_0 \ (n=3)$	$4.4 imes10^{21}$		0.023				
$\beta\beta\chi_0\chi_0$ (n = 3)	$4.4 imes10^{21}$		1.42				
$\beta\beta\chi_0\chi_0\ (n=7)$	$1.2 imes 10^{21}$		1.15				

Results: Lorentz violating 2vß

- The countershaded operator can assume negative values → negative fluctuations are allowed in the fit
- Strong anti correlation between the SM and LV components, it get worse with the improved model
- Double-sided limit at 90% C.I.

Results: Sterile matrino em/s

- First limit on sterile neutrino mixing angles from a bolometric experiment
- * The large $Q_{\beta\beta}$ of ¹⁰⁰Mo allows to investigate a larger range
- * The uncertainties on the 2νββ shape affects mostly the low values of m_N

Still far from exploring the not-excluded region

CUPID will be the experiment with the largest amount of 2νββ events ever collected

4

5

6

Outline

- ¹ Double-β decays
- 2 Scintillating cryogenic calorimeters
- 3 CUPID-0 combined background model
 - CUPID-Mo BSM studies
 - CUPID sensitivity
 - Conclusion and outlook

CUPID sensitivity studies

Construction of the CUPID Background Budget

Knowledge of radioactive contaminants

CUPID-0,CUPID-Mo and CUORE background model

Sensitivity estimation

Preliminary background projection

Most common radioactive sources:

- Long-living radioactive nuclei: ²³²Th, ²³⁸U and ⁴⁰K
- Anthropogenic radioactive isotopes such as ⁸⁷Rb and ⁹⁰Sr
- Cosmogenic activation products in holders and crystals

Reference activities:

- Preliminary CUORE background model for cryostat and holders contaminants
- Preliminary CUPID-Mo background model for crystal contaminants
- ACTIVIA

for $2\nu\beta\beta$ was considered

Sensitivity: Majoron decays

- ◆ 450 kg·yr of ¹⁰⁰Mo exposure (~2 years of CUPID data taking)
- With 450 kg·yr of ¹⁰⁰Mo the CUPID median exclusion sensitivity on the neutrino-Majoron coupling will be competitive with the limits set with ¹³⁶Xe

Decay mode	CUPID exclusion sensitivity		NEMO-3 [46, 135]		
Decay mode	$T_{1/2}$ [yr]	g^{M}_{ee}	$T_{1/2}$ [yr]	g_{ee}^M	
$\beta\beta\chi_0 \ (n=1)$	$1.2 imes 10^{24}$	(0.6 - 1.0)×10 ⁻⁵	$4.4 imes10^{22}$	$(3.0 - 5.1) \times 10^{-1}$	
$\beta\beta\chi_0 \ (n=2)$	$2.0 imes10^{23}$	-	$9.9 imes10^{21}$	-	
$\beta\beta\chi_0 \ (n=3)$	$7.5 imes 10^{22}$	0.0089	$4.4 imes10^{21}$	0.023	
$\beta\beta\chi_0\chi_0$ (<i>n</i> = 3)	$7.5 imes 10^{22}$	0.88	$4.4 imes10^{21}$	1.42	
$\beta\beta\chi_0\chi_0 \ (n=7)$	$1.9 imes 10^{22}$	0.73	$1.2 imes 10^{21}$	1.15	

-5

Sensitivity: Lorentz viola

operator among $0\nu\beta\beta$ experiments

With 450 kg·yr of ¹⁰⁰Mo we expect to reach the most stringent limit on the *countershaded*

CUPID

 $-2.2 \cdot 10^{-7} < \dot{a}_{of}^{(3)} < 7.5 \cdot 10^{-8}$

Isotope	Limit on $\dot{a}_{of}^{(3)}$ [GeV]
⁷⁶ Ge	$(-2.7 < \dot{a}_{of}^{(3)} < 6.2) \cdot 10^{-6}$
⁸² Se	$\dot{a}_{of}^{(3)} < 4.1 \cdot 10^{-6}$
¹³⁶ Xe	$-2.65 \cdot 10^{-5} < \dot{a}_{of}^{(3)} < 7.6 \cdot 10^{-6}$
¹¹⁶ Cd	$\dot{a}_{of}^{(3)} < 4.0 \cdot 10^{-6}$
¹⁰⁰ Mo	$(-4.2 < \dot{a}_{of}^{(3)} < 3.5) \cdot 10^{-7}$
³ H	$ \dot{a}_{of}^{(3)} < 3.0 \cdot 10^{-8}$

0.8

Sensitivity: Sterile neutrino emission

CUPID median exclusion sensitivity with 450 kg·yr of ¹⁰⁰Mo

Outline

- Double-β decays
- Scintillating cryogenic calorimeters
- CUPID-0 combined background model
- CUPID-Mo BSM studies
- CUPID sensitivity
- Conclusion and outlook

Conclusions

- exposures
- properties of $2\nu\beta\beta$ and to search for exotic double- β decays
- reconstruction
- excellent data reconstruction provided by the combined background model
- the future experiments
- exotic double- β decays parameters

The increasing interest in the search for $0\nu\beta\beta$ leads experiments to reach higher and higher

* The large statistic of $2\nu\beta\beta$ events collected by these experiments can be used to study the nuclear

• On this purpose, scintillating cryogenic calorimeters is a promising technology due to its excellent resolution, high detection efficiency and particle identification that allow the accurate background

* In CUPID-0 we measured the unprecedented sensitivity the half-life of ⁸²Se $2\nu\beta\beta$ thanks to the

* In CUPID-Mo we demonstrated the potential of Li₂MoO₄ based detectors in the search for exotic double- β decays, considering a systematic effect never considered before and paving the way for

The CUPID exclusion sensitivity demonstrates that we expect to set competitive limits on the

Thanks for the attention

Backup slides

Neutrinoless double-β decay (0vββ)

 $0\nu\beta\beta$ is a nuclear process implying the decay of two neutrons into protons and electrons without the emission of antineutrinos.

- It would establish a total lepton number violation (ΔL = 2) not conserving the B-L symmetry of the SM
- Only practical way to probe that neutrinos are Majorana particles, validating the so called "see-saw" mechanism
- Its signature is a sharp peak at the Qvalue of the decay

n

$$(A, Z) \rightarrow (A, Z + 2) + 2e^{-1}$$

Isotope	$T_{1/2}^{0\nu}$ [y]
⁷⁶ Ge	$> 1.8 imes 10^{26}$
⁸² Se	$>4.6 imes10^{24}$
¹⁰⁰ Mo	$> 1.8 imes 10^{24}$
¹¹⁶ Cd	$> 2.2 \times 10^{23}$
¹³⁰ Te	$> 2.2 imes 10^{25}$
¹³⁶ Xe	$>2.3 imes10^{26}$

Two-neutrinos double- β decay ($2\nu\beta\beta$)

 $0\nu\beta\beta$ is a nuclear process implying the decay of two neutrons into protons, electrons and antineutrinos.

- SM allowed second order weak process * which half-life spans the range 10¹⁸-10²¹ years
- It has been observed for several nuclei

 $(A, Z) \rightarrow (A, Z + 2) + 2e^{-} + 2v^{-}$

Isotope	$Q_{\beta\beta}$ [MeV]	$T_{1/2}^{2\nu}$ [yr]
⁴⁸ Ca	4.263	$6.4^{+0.7}_{-0.6}~{ m (stat.)}^{+1.2}_{-0.9}~{ m (syst.)} imes10^{19}$
⁷⁶ Ge	2.039	2.022 ± 0.018 (stat.) \pm 0.038 (syst.) $ imes$ 10^{21}
⁸² Se	2.998	$8.69 \pm 0.05~{ m (stat.)}^{+0.09}_{-0.06}~{ m (syst.)} imes 10^{19}$
⁹⁶ Zr	3.348	2.35 ± 0.14 (stat.) \pm 0.16 (syst.) $ imes$ 10^{19}
100 Mo	3.035	7.07 ± 0.02 (stat.) \pm 0.11 (syst.) $ imes$ 10^{18}
¹¹⁶ Cd	2.813	2.63 ± 0.01 (stat.) $^{+0.11}_{-0.13}$ (syst.) $ imes 10^{19}$
¹³⁰ Te	2.527	$8.76^{+0.09}_{-0.07}~{ m (stat.)}^{+0.14}_{-0.17}~{ m (syst.)} imes10^{20}$
¹³⁶ Xe	2.459	2.165 ± 0.016 (stat.) \pm 0.059 (syst.) $ imes$ 10^{21}
¹⁵⁰ Nd	3.371	$9.34 \pm 0.22~(ext{stat.})^{+0.62}_{-0.60}~(ext{syst.}) imes 10^{18}$

Ονββ experimental limits

- The uncertainties on the nuclear matrix elements affects the limits on the effective Majorana mass
- The lobster plot shows which regions are favoured assuming Inverted Hierarchy and Normal Hierarchy

Isotope	$T_{1/2}^{0\nu}$ [y]	$m_{\beta\beta}$ [eV]
⁷⁶ Ge	$> 1.8 imes 10^{26}$	< (0.079 - 0.180)
⁸² Se	$>4.6 imes10^{24}$	< (0.263 - 0.545)
¹⁰⁰ Mo	$> 1.8 imes 10^{24}$	< (0.280 - 0.490)
¹¹⁶ Cd	$> 2.2 \times 10^{23}$	< (1.0 - 1.7)
¹³⁰ Te	$> 2.2 \times 10^{25}$	< (0.090 - 0.305)
¹³⁶ Xe	$> 2.3 imes 10^{26}$	< (0.036 - 0.156)

$$m_{\beta\beta} = \left| \sum_{j=1}^{3} U_{ej}^{2} m_{j} \right| = \left| U_{e1}^{2} m_{1} + U_{e2}^{2} e^{i\beta_{1}} m_{2} + U_{e3}^{2} e^{i\beta_{2}} m_{3} \right|$$

Experimental sensitivity

We are looking for an extremely rare decay whose signature is a sharp peak, the sensitivity is halflife corresponding to the maximum signal that can be hidden by a background fluctuation:

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{\ln 2}{n_{\sigma}} \frac{N_A i\epsilon}{A} \sqrt{\frac{Mt}{(BI)\Delta E}}$$

Where it assumes Poissonian background fluctuations in the region of interest (ROI). The dependence of the square root of the exposure (*Mt*) is the main limiting factor.

Nevertheless, if we assume zero-background in the ROI:

$$T_{0\nu} > \ln 2 \frac{x\eta \epsilon N_A \Lambda}{A}$$

MtZero background is the key ingredient to boost the sensitivity! n_L

Experimental sensitivity

- Large exposure (*Mt*) necessary to reach high sensitivities (enrichment required for most of the candidate isotopes)
- High Q-value, for larger PSF and reject most of the environmental radioactivity
- High detection efficiency (ϵ)
- High energy resolution (ΔE)

Formula with background:

* (BI) = background index

Formula without background:

$$T_{0\nu} > \ln 2 \frac{x\eta \epsilon N_A}{A} \frac{Mt}{n_L}$$

NTD-Ge thermistors

obtained exposing the the Ge-wafer to a neutron beam

 $R(T) = R_0 \exp\left(\frac{T_0}{T}\right)^{\gamma}$

- Each crystal is equipped with one NTD and one heater, used to inject artificial pulses to characterize the sensor performances and stabilize drifts in temperature
- Thermal and electric contact made with 50 μ m gold wires thermally coupled to the thermal bath

For macro-calorimeters the best temperature sensor is the Neutrons Transmutation Doped Ge thermistor, Small Ge crystals with a extremely high and uniform distribution of impurities,

NEMO-3 experiment

Tracking calorimeters

- ◆ Detection of both electrons emitted separately → possibility to measure the angle between the two electrons emitted
- energy resolution of a single calorimeter
 σ ~100 keV
- Detector acceptance and selection
 efficiency ε = (2.356 ± 0.002) %

Majoron emitting modes

One $(\beta\beta\chi_0)$ or two $(\beta\beta\chi_0\chi_0)$ Majorons can be emitted according to the different models

The parameter of interest is the neutrino-Majoron coupling:

$$[T_{0\nu M}^{1/2}]^{-1} = G_{0\nu M} \left| \left\langle g_{ee}^{M} \right\rangle \right|^{2m} \left| M_{0\nu M} \right|^{2}$$

model	spectral index	Decay mode	NG boson	ΔL	Ref.
IB			No	0	
IC	1	$etaeta\chi_0$	Yes	0	[121]
IIB			No	-2	
"bulk"	2	$etaeta\chi_0$	bulk field	0	[123]
IIF	2	000	Gauge boson	-2	[122]
IIC	5	PPX_0	Yes	-2	[1 2 1]
ID			No	0	
IE	3	$etaeta\chi_0\chi_0$	Yes	0	[121]
IID			No	-1	
IIE	7	$etaeta\chi_0\chi_0$	Yes	-2	[124]

decay mode	T _{1/2} [yr]	$G [\times 10^{-18} \mathrm{yr}^{-1}]$	NME	g _{ee} lower limit
⁷⁶ Ge [133]				
$\beta\beta\chi_0 \ (n=1)$	$> 6.4 imes 10^{23}$	44.2	(2.66 - 6.34)	$(3.0 - 7.1) \times 10^{-10}$
$\beta\beta\chi_0 \ (n=2)$	$> 2.9 imes 10^{23}$	-	-	-
$\beta\beta\chi_0 \ (n=3)$	$> 1.2 imes 10^{23}$	0.073	0.381	$1.7 imes10^{-2}$
$\beta\beta\chi_0\chi_0$ (<i>n</i> = 3)	$> 1.2 imes 10^{23}$	0.22	0.0026	1.21
$\beta\beta\chi_0\chi_0$ (n = 7)	$> 1.1 imes 10^{23}$	0.420	0.0026	1.05
⁸² Se [134]				
$\beta\beta\chi_0 \ (n=1)$	$> 1.2 imes 10^{23}$	361	(2.72 - 5.30)	$(2.9-5.6) \times 10^{-5}$
$\beta\beta\chi_0 \ (n=2)$	$> 3.8 imes 10^{22}$	-	-	· -
$\beta\beta\chi_0 \ (n=3)$	$> 1.4 imes 10^{22}$	1.22	0.305	$1.6 imes10^{-2}$
$\beta\beta\chi_0\chi_0$ (<i>n</i> = 3)	$> 1.4 imes 10^{22}$	3.54	0.002	1.18
$\beta\beta\chi_0\chi_0$ (<i>n</i> = 7)	$> 2.2 imes 10^{21}$	26.9	0.002	1.13
¹⁰⁰ Mo [46, 135]				
$\beta\beta\chi_0 \ (n=1)$	$>4.4 imes10^{22}$	598	(3.84 - 6.59)	$(3.0-5.1) \times 10^{-5}$
$\beta\beta\chi_0 \ (n=2)$	$>9.9 imes10^{21}$	-	-	-
$\beta\beta\chi_0 \ (n=3)$	$>4.4 imes10^{21}$	2.42	0.263	$2.3 imes10^{-2}$
$\beta\beta\chi_0\chi_0$ (<i>n</i> = 3)	$>4.4 imes10^{21}$	6.15	0.0019	1.42
$\beta\beta\chi_0\chi_0$ (<i>n</i> = 7)	$>1.2 imes10^{21}$	50.8	0.0019	1.15
¹¹⁶ Cd [57]				
$\beta\beta\chi_0 \ (n=1)$	$> 8.2 imes 10^{21}$	569	(3.105 - 5.43)	$(8.5-15) \times 10^{-5}$
$\beta\beta\chi_0 \ (n=2)$	$>4.1 imes10^{21}$	-	-	-
$\beta\beta\chi_0 \ (n=3)$	$> 2.6 imes 10^{21}$	2.28	0.144	$5.6 imes10^{-2}$
$\beta\beta\chi_0\chi_0 \ (n=3)$	$>2.6 imes10^{21}$	5.23	0.0009	2.37
$\beta\beta\chi_0\chi_0$ (n = 7)	$> 8.9 imes 10^{20}$	33.9	0.0009	1.94
¹³⁶ Xe [131, 132]				
$\rho \rho_{ac}$ $(n-1)$	$> 2.6 imes 10^{24}$	400	(1 1 1 1 77)	$(0.6 - 2.8) \times 10^{-5}$
$pp\chi_0 (n=1)$	$>4.3 imes10^{24}$	409	(1.11 - 4.77)	$(0.5 - 2.1) \times 10^{-10}$
$\beta \beta \alpha (n-2)$	$> 1.0 imes 10^{24}$			-
$pp\chi_0 (n=2)$	$>9.8 imes10^{23}$	-	-	-
$\beta\beta\gamma_{n}$ $(n-3)$	$>4.5 imes10^{23}$	1 47	0 160	$4.8 imes10^{-3}$
$pp\chi_0 (n-3)$	$> 6.3 \times 10^{23}$	1.47	0.100	$4.0 imes10^{-3}$
$\beta\beta\gamma_{0}\gamma_{0}(n-3)$	$> 4.5 \times 10^{23}$	3.05	0.0011	0.69
$PP \Lambda_0 \Lambda_0 (n - 3)$	$> 6.3 \times 10^{23}$	5.05	0.0011	0.63
$\beta\beta\gamma_{0}\gamma_{0}(n=7)$	$> 1.1 \times 10^{22}$	12 5	0.0011	1.23
$PP \Lambda 0 \Lambda 0 (n - 7)$	$> 5.1 \times 10^{22}$	12.0	0.0011	0.84

Lorentz violating 2vßß

SM is an effective quantum field theory that includes SM fields and that introduce Lorentz violation but pre gravity. Four operators, called *countershaded*, equally change all neutrino energies and have no impact on

$$p = (E, \mathbf{p}) \longrightarrow p = (E, \mathbf{p} + \mathbf{a}_{of}^{(3)} - \mathring{a}_{of}^{(3)} \hat{\mathbf{p}})$$

Lorentz violation does not affect the NME but Limit on $\dot{a}_{of}^{(3)}$ [GeV] Isotope appears as a kinematic effect modifying the phase $\begin{array}{c} (-2.7 < \dot{a}_{of}^{(3)} < 6.2) \cdot 10^{-6} \\ \dot{a}_{of}^{(3)} < 4.1 \cdot 10^{-6} \\ -2.65 \cdot 10^{-5} < \dot{a}_{of}^{(3)} < 7.6 \cdot 10^{-6} \\ \dot{a}_{of}^{(3)} < 4.0 \cdot 10^{-6} \end{array}$ ⁷⁶Ge space factor, thus the summed electron energy distribution: ⁸²Se ¹³⁶Xe ¹¹⁶Cd ¹⁰⁰Mo $(-4.2 < \dot{a}_{of}^{(3)} < 3.5) \cdot 10^{-7}$ $|\dot{a}_{of}^{(3)}| < 3.0 \cdot 10^{-8}$ ³H

$$\frac{d\Gamma_{SME}^{2\nu}}{dK} = |\mathcal{M}_{2\nu}|^2 \left(\frac{d\mathcal{G}_{SM}}{dK} + \frac{d(\delta\mathcal{G}_{LV})}{dK}\right)$$

Sterile neutrino emissions

If the sterile neutrino N has a mass $m_N < Q_{\beta\beta}$, it can be emitted instead of an antineutrinos in the $2\nu\beta\beta$ ($\nu N\beta\beta$):

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + \overline{\nu} + N$

The effect on the total decay rate is:

 $\Gamma = \cos^4 \theta \Gamma_{SM} + 2\cos^2 \theta \sin^2 \theta \Gamma_{\nu N}$

Where $\sin^2 \theta$ is called active-sterile mixing strength

We can set limits where the actual boundaries are relatively weak

Bosonic neutrinos

In the hypothesis in which neutrinos partly obey to the Bose-Einstein statistic, the emission of two identical neutrinos in $2\nu\beta\beta$ offers the opportunity to investigate the Pauli's exclusion principle.

$$\Gamma_{2\nu\beta\beta} = \cos^4 \chi \Gamma_f + \sin^4 \chi \Gamma_b$$

Where $\sin^4 \chi$ represents the bosonic fraction of the neutrino wave function, while Γ_f and Γ_b are the decay rates for the pure fermionic and pure bosonic neutrinos.

Background in the ROI

Radioactive chains

CUPID-0 particle identification

From phase-I to phase-II - M1

- Almost all the a-peaks have the same intensity in phase-I and phase-II
- ✤ ⁶⁵Zn decayed in phase-II, while other peaks appeared (from cosmogenic activation of copper)
- Higher a continuum from close component contaminations (10 mK)
- $2\nu\beta\beta$ is dominant up to 3 MeV *

66

From phase-I to phase-II - M2 and M2sum

Multiplicity = $2 \rightarrow$ events hitting two crystals simultaneously

 \mathcal{M}_2 = single energy deposition in both the crystals

 Σ_2 = sum of the two energies deposited (peak structures)

67

Background model - Fit

Binned simultaneous Maximum Likelihood fit using a Bayesian framework with a Markov Chain Monte Carlo (MCMC) approach.

Expectation value of the counts in the *i*-th bin $\langle C$

From the Bayes theorem the *joint posterior pdf* is defined as

Posterior
$$\left(N_{j}, \left\langle C_{ij,\delta}^{\text{MC}} \right\rangle \mid C_{i,\delta}^{\text{exp}}, C_{ij,\delta}^{\text{MC}} \right) = \prod_{i,\delta} \text{Pois} \left(C_{i,\delta}^{\text{exp}} \mid \left\langle C_{i,\delta}^{\text{exp}} \right\rangle \right) \times \prod_{j} \text{Prior} \left(N_{j}\right)$$

 $\times \prod_{ij,\delta} \text{Pois} \left(C_{ij,\delta}^{\text{MC}} \mid \left\langle C_{ij,\delta}^{\text{MC}} \right\rangle \right) \times \text{Prior} \left(\left\langle C_{ij,\delta}^{\text{I}} \right\rangle \right)$

Activity $\left[\frac{Bq}{kg}\right] = \frac{N_j^2 \cdot N^2}{Mass[kg] \times livetime[s]}$

$$\left\langle \sum_{i,\delta}^{\exp} \right\rangle = \sum_{j=1}^{m} N_j \cdot \left\langle C_{ij,\delta}^{\mathrm{MC}} \right\rangle$$

2vββ half-life measurement

Final result

 $T_{1/2}^{2\nu} = [8.69 \pm 0.05(\text{stat.})_{-0.09}^{+0.06}(\text{syst.})] \times 10^{19} \text{yr}$ Using as Phase Space Factor the value $G^{2\nu} = (1.996 \pm 0.028) \times 10^{-18}$ The final result on the nuclear matrix element is:

$$\mathscr{M}_{2\nu}^{eff} = 0.0760 + 0.0006 - 0.0007$$

Published on PRL

CUPID-0 Fit reconstruction M1a

Phasel

Energy [keV]

Phasell

CUPID-0 Fit reconstruction M1b

Phasel

Phasell

CUPID-0 Fit reconstruction M2

Phasel

Phasell

CUPID-0 Fit reconstruction M2sum

Phasel

Phasell

CUPID-0 crystal contaminations

Bulk Source	Specific Activity [Bq/kg] phase-I phase-II		Constrained	Prior [Bq/kg]
82 Se 2 $\nu\beta\beta$	$(9.87 \pm 0.02) imes 10^{-4}$		yes	Uniform
⁶⁵ Zn	$(3.63 \pm 0.06) imes 10^{-4}$	$(0.71 \pm 0.06) imes 10^{-4}$	no	Uniform
⁴⁰ K	$(6.0\pm0.$.3)×10 ⁻⁵	yes	Uniform
⁶⁰ Co	$(1.3 \pm 0.3) imes 10^{-5}$	$(1.3 \pm 0.4) imes 10^{-5}$	no	Uniform
¹⁴⁷ Sm	$(1.3 \pm 0.3) imes 10^{-7}$		yes	Uniform
²³⁸ U to ²²⁶ Ra	$(5.48 \pm 0.08) imes 10^{-6}$		yes	Uniform
²²⁶ Ra to ²¹⁰ Pb	$(1.47 \pm 0.02) imes 10^{-5}$		yes	Uniform
²¹⁰ Pb	$< 1.4 imes 10^{-7}$		yes	Uniform
²³² Th to ²²⁸ Ra	$(2.74 \pm 0.08) imes 10^{-6}$		yes	Uniform
²²⁸ Ra	$(1.26 \pm 0.03) imes 10^{-5}$		yes	Uniform
²³⁵ U to ²³¹ Pa	$(6.2\pm0.$.7)×10 ⁻⁷	yes	Uniform
Surface Source	Specific Acti phase-I	vity [Bq/cm ²] phase-II	Constrained	Prior [Bq/cm ²]
²²⁶ Ra to ²¹⁰ Pb (10nm)	$(2.8 \pm 0.2) imes 10^{-8}$		yes	$\mathcal{G}(1.49, 0.01)$ ·Bulk
²²⁸ Ra (10nm)	$(6.8 \pm 1.1) imes 10^{-9}$		yes	G(4.190, 0.008)·Bu
226 Ra to 210 Pb (10 μ m)	$< 2.0 imes 10^{-9}$		yes	Uniform
228 Ra (10 μ m)	$(2.8 \pm 1.5) imes 10^{-9}$		yes	Uniform
²¹⁰ Pb (1nm)	$(3.39 \pm 0.08) imes 10^{-8}$	$(1.39 \pm 0.03) imes 10^{-7}$	no	Uniform

Bulk Source	Specific Activity [Bq/kg] phase-I phase-II		Constrained	Prior [Bq/kg]
82 Se 2 $\nu\beta\beta$	$(9.87 \pm 0.02) imes 10^{-4}$		yes	Uniform
⁶⁵ Zn	$(3.63 \pm 0.06) imes 10^{-4}$ $(0.71 \pm 0.06) imes 10^{-4}$		no	Uniform
⁴⁰ K	$(6.0\pm0.$	3)×10 ⁻⁵	yes	Uniform
⁶⁰ Co	$(1.3 \pm 0.3) imes 10^{-5}$	(1.3 \pm 0.4) $ imes$ 10 $^{-5}$	no	Uniform
¹⁴⁷ Sm	$(1.3 \pm 0.3) imes 10^{-7}$		yes	Uniform
²³⁸ U to ²²⁶ Ra	$(5.48 \pm 0.08) imes 10^{-6}$		yes	Uniform
²²⁶ Ra to ²¹⁰ Pb	$(1.47 \pm 0.02) imes 10^{-5}$		yes	Uniform
²¹⁰ Pb	$< 1.4 imes 10^{-7}$		yes	Uniform
²³² Th to ²²⁸ Ra	$(2.74 \pm 0.08) imes 10^{-6}$		yes	Uniform
²²⁸ Ra	$(1.26 \pm 0.03) imes 10^{-5}$		yes	Uniform
²³⁵ U to ²³¹ Pa	$(6.2 \pm 0.7) imes 10^{-7}$		yes	Uniform
Surface Source	Specific Activ phase-I	vity [Bq/cm ²] phase-II	Constrained	Prior [Bq/cm ²]
²²⁶ Ra to ²¹⁰ Pb (10nm)	$(2.8 \pm 0.2) imes 10^{-8}$		yes	$\mathcal{G}(1.49, 0.01)$ ·Bulk
²²⁸ Ra (10nm)	$(6.8 \pm 1.1) imes 10^{-9}$		yes	$\mathcal{G}(4.190, 0.008)$ ·Bulk
226 Ra to 210 Pb (10 μ m)	$< 2.0 imes 10^{-9}$		yes	Uniform
228 Ra (10 μ m)	$(2.8 \pm 1.5) imes 10^{-9}$		yes	Uniform
²¹⁰ Pb (1nm)	$(3.39 \pm 0.08) imes 10^{-8}$ $(1.39 \pm 0.03) imes 10^{-7}$		no	Uniform

CUPID-0 close components contaminations

Bulk source	Volume	Specific Activity [Bq/kg] phase-I phase-II		Constrained	Prior [Bq/kg]
⁵⁴ Mn	Holders	$(3.7\pm0.5){ imes}10^{-4}$	-	-	Uniform
⁵⁴ Mn	10mK	-	(6.3 \pm 0.6) $ imes$ 10 $^{-5}$	-	Uniform
⁵⁸ Co	10mK	-	$(5.7\pm0.6)\! imes\!10^{-5}$	-	Uniform
⁶⁰ Co	10mK	-	(4.5 \pm 2.4) $ imes$ 10 $^{-5}$	-	Uniform
Surface source	Volume	Specific Activity [Bq/cm ²] phase-I phase-II		Constrained	Prior [Bq/cm ²]
232 Th(10 μ m)	Holders	$(5.2 \pm 0.2) \times 10^{-9}$		yes	$\mathcal{G}(5.0,0.2) imes10^{-9}$
238 U(10 μ m)	Holders	$(1.3 \pm 0.2) imes 10^{-8}$		yes	$\mathcal{G}(1.4,0.2) imes10^{-8}$
232 Th(10 μ m)	Reflectors	$< 7.7 imes 10^{-10}$	-	-	Uniform
238 U(10 μ m)	Reflectors	$< 2.7 imes 10^{-9}$	-	-	Uniform
210 Pb(10 μ m)	Reflectors	$(1.9 \pm 0.5) imes 10^{-8}$	-	-	Uniform
²¹⁰ Pb(10nm)	Reflectors	$(8.1 \pm 0.3) imes 10^{-8}$	-	-	Uniform
232 Th(10 μ m)	10mK	-	$< 2.2 imes 10^{-8}$	-	Uniform
238 U(10 μ m)	10mK	-	(6.1 \pm 1.8) $ imes$ 10 $^{-8}$	-	Uniform
210 Pb(10 μ m)	10mK	-	$(2.1 \pm 1.2) imes 10^{-7}$	-	Uniform
²¹⁰ Pb(10nm)	10mK	-	(5.5 \pm 0.2) $ imes$ 10 $^{-7}$	-	Uniform
210 Pb(1 μ m)	10mK	-	$(1.7 \pm 0.2) \times 10^{-7}$	-	Uniform

CUPID-0 cryostat contaminations

Bulk source	Volume	Specific Acti phase-I	vity [Bq/kg] phase-II	Constrained	Prior [Bq/kg]
²³² Th	CryoInt	$(4.5 \pm 2.6) imes 10^{-4}$		yes	Uniform
²³⁸ U	CryoInt	$(4.4 \pm 2.1) imes 10^{-4}$		yes	Uniform
40 K	CryoInt	$(2.7 \pm 0.7) imes 10^{-3}$	$(4.1 \pm 0.5) imes 10^{-3}$	no	Uniform
⁶⁰ Co	CryoInt	(7.4 \pm 1.4) $ imes$ 10 $^{-5}$	$(8.9 \pm 5.6) imes 10^{-5}$	no	Uniform
²³² Th	CryoExt+ExtPb	$(3.8 \pm 0.6) imes 10^{-4}$		yes	Uniform
²³⁸ U	CryoExt+ExtPb	$(4.6 \pm 0.9) imes 10^{-4}$		yes	Uniform
40 K	CryoExt+ExtPb	$(3.8\pm0.8) imes10^{-3}$	$< 1.3 imes 10^{-3}$	no	Uniform
²¹⁰ Pb	ExtPb	(8.0 ± 0.3)		yes	Uniform
⁶⁰ Co	CryoExt	$(3.0 \pm 0.8) imes 10^{-5}$	$< 6.5 \times 10^{-5}$	no	$\mathcal{G}(2.5,0.9) imes10^{-5}$
²³² Th	IntPb	$(3.2 \pm 2.2) imes 10^{-5}$		yes	Uniform
²³⁸ U	IntPb	$< 3.7 imes 10^{-5}$		yes	Uniform

Background model - reconstruction

77

CUPID-Mo calibration spectrum

CUPID-Mo particle identification

CUPID-Mo simulations

Measurement of ¹⁰⁰Mo 2vßß spectral shape

- The model of the spectral shape has been implemented in the background model fit and the value of $\xi_{31}^{2\nu}$ is kept as free parameter
- **First measurement** of the $\xi_{31}^{2\nu}$ parameter compatible with the SSD prediction: $\xi_{31}^{2\nu} = 0.45 \pm 0.03$ (stat.) ± 0.05 (syst.)

Uncert. $T_{1/2}[\%]$	Uncert. $\xi_{3,1}$ [%]
0.83	0.9
$+1.0^{a}$	-4.9^{a}
0.24	7.7
0.37	1.4
$+0.11 \\ -0.16$	$+3.5 \\ -3.7$
$+0.13 \\ -0.22$	$+6.0 \\ -6.8$
0.11	1.4
1.2	-
0.2	-
	Uncert. $T_{1/2}$ [%] 0.83 +1.0 ^a 0.24 0.37 +0.11 -0.16 +0.13 -0.22 0.11 1.2 0.2

¹⁰⁰Mo $2\nu\beta\beta$ half-life

 $7.07 \pm 0.02(\text{stat.}) \pm 0.1(\text{syst.}) \times 10^{18}$

Sensitivity: Majoron decays

- (about 19, 112, 225, and 450 kg·yr of ¹⁰⁰Mo)
- coupling will be competitive with the limits obtained with ¹³⁶Xe

Exposure scan corresponding to 1 month, 6 months, 1 year and 2 years of data taking

* With 450 kg·yr of ¹⁰⁰Mo the CUPID median exclusion sensitivity on the neutrino-Majoron

¹⁰⁰Mo $(-4.2 < \dot{a}_{of}^{(3)} < 3.5) \cdot 10^{-7}$

 $|\dot{a}_{of}^{(3)}|$

³H

 $< 3.0 \cdot 10^{-8}$

1.0 round sources do not have enough

* With 450 kg·yr of ¹⁰⁰Mo we expect to reach the most stringent limit on the countershaded

Sensitivity: Sterile neutrino emission

CUPID median exclusion sensitivity with 450 kg·yr of ¹⁰⁰Mo

Sensitivity: Bosonic neutrinos

$$\Gamma_{2\nu\beta\beta} = \cos^4 \chi \Gamma_f + \sin^4 \chi \Gamma_b$$

 $\sin^4 \chi$ represents the bosonic fraction of the neutrino wave function, Γ_f and Γ_b are theoretically calculated (model dependent)

The actual limit from NEMO-3 is

 $\sin^2\chi < 0.27$

The mean exclusion sensitivity of CUPID with 450 kg·yr of ¹⁰⁰Mo is

Sensitivity: Bosonic neutrinos

$$\Gamma_{2\nu\beta\beta} = \cos^4 \chi \Gamma_f + \sin^4 \chi \Gamma_b$$

 $\sin^4 \chi$ represents the bosonic fraction of the neutrino wave function, Γ_f and Γ_b are theoretically calculated (model dependent)

The actual limit from NEMO-3 is t) $\sin^2 \chi < 0.27$ at 90% CL The mean exclusion sensitivity of CUPID with $450 \text{ kg} \cdot \text{yr of } ^{100}\text{Mo is}$ $\sin^2 \chi < 0.11$ at 90% CI

1.0

Background in the ROI for CUPID-Mo

- Radio purity of Li₂MoO₄ crystals sufficient to reach the goals of CUPID *
- searches

Eur.Phys.J.C 83 (2023) 7, 675

Higher contribution from cryostat copper components \rightarrow Cryostat not optimised for $0\nu\beta\beta$