ET recycling cavities design

(a work in progress)

J. Degallaix for the ET team

First XGCD meeting – optical design

Introduction for the current ET work

- main focus on the recycling cavities design
- as the infrastructure TDR will come before the instrument TDR
- based on the arm cavity design previously published (Design Report Update 2020)

The starting point: the arm cavities

LALACACOLOLONAVAJAJAJAJANAVALATA

One given parameter : the cavity length (10 km)

- ET HF: set a g-factor (0.95) → derived the beam radius, mirror diameter
- ET- LF set a substrate size (Ø 450 mm) \rightarrow derived the beam radius, g-factor

The starting point: the arm cavities

	λ [nm]	CavityMirror ØBeam radiuslength [km][cm]IM / EM [cm]		g-factor	
ET - HF	1064	10	62	12	0.95
ET - LF	1550		45	9	0.63

The starting point: the arm cavities

LALACACOLOLONAVAJAJAJAJANAVALATA

Initial design to be fined tuned after more advanced simulations (with realistic mirror profiles, check parametric instabilities...)

	λ [nm]	Cavity length [km]	CavityMirror ØBeam radiusgth [km][cm]IM / EM [cm]		g-factor
ET - HF	1064	10	62	12	0.95
ET - LF	1550	10	45	9	0.63

The recycling cavity: at the heat of the interferometer

The recycling cavity: at the heat of the interferometer

The recycling cavity: at the heat of the interferometer

First constraint on the recycling cavities

LALACACOLOLONAVAJAJAJAJANAVALATA

Design based on the experience from the current generation of instruments:

- non-degenerated (stable) cavities
- one-way Gouy phase > 20°
- decrease the beam size
- not too long ~100m, +/- 20 m (constraint for the SR cavity)
- first thoughts: PRC and SRC similar, BS at 45°

Some additional constraints for ET-HF

LALACACOLOLONAVAJAJAJAJANAVALATA

- ET-HF room temperature interferometer, with huge circulating power in the PRC (~20 kW)
- For ET-HF, managing thermal effects:
 - ► large beam radius at BS (> 26 mm)¹
 - Iarge beam radius on PRM (> 10 mm)²

¹ ET TDS ² To achieve same power density as on the ITM

The design for ET - LF

LALACACOLOLONAVAJAJAJAJANAVALATA

Already published¹ and compatible.

Need some refinement to estimate the optical losses and astigmatism

Compensation plate shaped like a lens

Optic		SRM	BS	ZM1	ZM2		
ROC [m]	LF HF	-9410 -630	inf	-50	-82.5 -63.2		
Beam radius [mm]	LF HF	6.1 6.3	6.2 6.4	8.9 8.3	30 38		
Space		SRM-BS	BS-ZM1	ZM1-ZM2	ZM2-1TM		
Length [m]	LF HF	10	70	50 80	52.5		
Gouy phase [deg]	LF HF	7.5 4.8	39 26	5.3 4.9	0.6 0.2	Total accumulated Gouy phase [deg]	52 36

The approach for ET - HF

LALACACOLOLONAVAJAJAJAJANAVALATA

Typical difficulty: increasing the Gouy phase will decrease the beam size

The approach for ET – HF, how it may look like

Beam evolution (ET-HF)

The updated proposed layout

Design of the recycling cavities critical for the infrastructure and must include a long term vision (compatible with Advanced ET+)

Status of the design

- so far design only with the ABCD matrix, simple parameter scans
- currently: more systematic approach with 1-2 or 3 focusing elements:

The short term work: consolidate the design

- compared configurations, looking for the best robustness
- more advanced simulations with aberration (FFT, modal expansion), how to compensate cold and hot distortions ?
- work on the control scheme (impact of longer arms, higher finesse)
- confirmed PyGWinc quantum noise level with realistic losses, imperfections
- check for pick-off beams (in 3D), ghost beams